背景

HNSDFZ的同学们为了庆祝春节,准备排练一场舞会。

描述

表演者排成n排,构成一个向前的正三角形(在屏幕上,即向下)。而就每个人,他有可能正面朝前(小的向前正三角形)、或向后三角形(小的向后正三角形)。
    然而这些人在服装上有明显区别——一部分穿冬季校服,其他的穿夏季校服。
    现在给出每个人的着衣情况,请你求穿夏季校服的同学所构成的最大正三角形,输出所含人数。
    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAPcAAADQCAIAAABUR2CKAAAgAElEQVR4Ae19WXAbSZoewAMgQII4CBAgQRDgfVMUD1F3Sy21+p6Znu6ZnY31TOzanrUfHH6wnxzhJ4cf/OLwgzfCDo93d2zvemM8O33MdPf0pVZLrfsWRfG+T5AEQBIHCRCXv0IRyWIVAFaBoERSVcEAM//8888///wqKysz609pNBqViJdogUNtgaxDXTuxcqIFKAuIKBdxcPgtIKL88LexWEMR5SIGDr8FRJQf/jYWayiiXMTA4beAiPLD38ZiDUWUixg4/BYQUX7421isoYhyEQOH3wIiyg9/G4s1FFEuYuDwW0BE+eFvY7GGIspFDBx+C4goP/xtLNZQRLmIgcNvARHlh7+NxRqKKBcxcPgtIKL88LexWEMR5SIGDr8FRJQf/jYWa5iFb/iZn/GzosRALDozmiI7YSMBWiA3mozOFM5HGcKDALcUodKY/MmkcelEB5JEAnQSN5qMDk4ijQS42feIjSk2WaHJ6KRGJJBCmtCqEX6eAbEv52koke0AW0BE+QFuPFF1nhYQUc7TUCLbAbaAiPID3Hii6jwtIKKcp6FEtgNsARHlB7jxRNV5WkBEOU9DiWwH2AI5QnXHrKdnLeDfCCGjVCrFLyh0gA4TOjNKz5WmYCOiEmYHEeUEQ5HcnGwqFJtFTiYtxhzLsGs2FBSORLKzslBWskK5dK5iXB7ox2Sjw4QtGAqjpiRKakQHWHRWlDCz6Kwolw01BRFVxS/Rh6kkoSNApJEAiEw6iRJRoCSUhgJ1KiVsTGfZi990UP7p7cFFl8dSrCYVSKg91CUmIAG6DtwoEQUGrjQsjTwYmJlcWPnRmUZgjpudmYsuAr+7ZwuHIx99/8xWouuoLaXFJtCNcy/x4WEqDD2Z1be7vLeeDJ/WrWhzw0w2WgH87r5eRBSRthLMvrJUqNGoL3ZUQRmiDx0gbNxoamVYVeNmDwRDT0YX/sNfXJRlUf3XHl3SSOwO5hbPKo9ZGZdn7aNrvX9yrom+70lNkIXJxowmo9OlEAnJ2NYCwV99crOlRKEoKj3RWJaMLYXOTGX4s90dmHUvzY44Aj+90KlV5SEj11BcZfjwsETRWWhRv7vaU5oXXBrte9fsRf9GpBG1uSUypaXBhk7kwyml2to4tLR2obu5rqyI6ENKT1ZoMjqtBlKJKKaSJNftvpmCAuWx+jLCn5CNTk37V3BfjpLwfGmwGW/1TnXVlSBKakKH8cs1DakVUnFxoylsAf4/3Bh4s1HbXKb+T1+MNJRpFXJKbW4plGjGxS0FiSQXYUzGFgpHrj0c/DcXbRV63zcPhn9wohZ5SXaSiwRogYjy4WFqQrIg0DuxZJKHz9Ub/sFpnvRP2goi0Jiouhmgl/0JnRUl3Cw6K8pgm/Fl2bONP27QN5T6/+77vn/93rGcbOqFjShGh/G7m6pxs6/6AmP2lX/+Ti2S9vRKB+VQqL2m9NdfPKgzq+W51PCRW3laaSQhgFQSYNFJlJaQkG3O5fV5VpuOloP57eaiL+4Nv9lZAX5cJDsCJEoT8ZtQGk82ZP/0ztg7LXp5bla9SXV3Ym5o2mEzFpLsRDgJ0OUiyocHzEw2Oozh+LORmZ91GJB6rqnsi1srFs16LnfAGrcqXSLqyZS2ScQ/Fp0VjfNFotEv7fLXOsx5smxrkbJSm3Pt6cSpBnNMQIK60PlIrUmARSdRumpcNpT7fe/0xc4amnNPf9NEuSw350J79XdPhs+1mBO2K6kkAqgnt5I0nbAls0UwHPnu0fhPjhbTDM1m1fXhyenFVaNGQVMggSWclsmlC2Jb9gbcKyuN7Va6lNcain73eEqvqpLFXn+ZwlliEeUqxuWBBCYbHb41MHfcmp8vp0aoJrXcXGruWZ7uMHHmwWJ4RX6wURcrShO59CRsTxcjcrW+oUSFHNlZ0jda9P/5q8lGs0Ypz0lYF1o8qREJsOgkSleNyzbr9OUrlVajhubc0980UQ4DV5Rob/bKlla8hYpcZoNBXW6UW0kWWzJbDM6ulKuzTWpqTExn+WGb8f89mny7qyI39lQFkSU8xkj9sOisaAo2dDNfPRz/064StDrNVqrJq9Tl4D3pSIWephBpJEDo6VXf6w96Vt219aV0dvx21xT99oarMRpW5sYBHS8D/0kpNMq3ojQPflmdNysaY/OHot/Zo39y2kQPUUDTKXNfqdF8+XD87Q4rqkbEcqsJZqQmo8fEU01AS2CxbYTCvVPLH1w4SuTT/Hv0mybKoQ3mOt492fD3X959s91Cv4aCyKoMiZIAXQ1uNKEtvP4NjBP+/KSZaYtSraKsMGfM7m6w6BJKo4kplCEMCbNDtwn7akl+Vokmj9aTZjtbo/v1rbnqEo1KKWMKT1aX1DxIJZWCBIRvD9jfbNSTWxcM6D4wMrw+N/d6tQLRrYuFV1aU8LHorGiM7drUWnWZzqzd7ERAgyav1OpufD6y5PYXq5M+MEmtSYAulhulq8mijy2s1lpNeMEjyu5pIH2UQy2tSlFRZpxfCVSVbD53WJUhURIQZIvbQwvt5So0NssEl5oMv75lrynTFyi2AY7FlrpQwsxiw1LA/eGFf3mWGpgyr4K8nBMV6scTrtfabaCTXCRAMyPKhC+IiHJ5aDrJMuf0auURjFJoCvltMhf2Tq84w3J9PsMILLyyoiQzi86KSiSutdDT5Y1fntOTTorOigH6jztMnz2e+WeXmtGX0cRkVUhGJ7m4KHevBRa94QvdFqLpXgd2hXJU4GJHzd9+fre6DG9plKhkdU5GT2GLeZd3ddXzw4bNiWqmIVR5OW1lyt4p1yutNoxOWcIJJ4vOiiZkAxLuDU91WPJVeQxUxVlbylQ9c3anN2jWq4g0EqC5EBWKckzm3B0c+rOOYhbaIFCWk3W2ofjboaU/6SqKa8FrKEIxs2DNikokX/TMn6w1aJn3T7yMI2WFl/ucY4u+Fhv1KoyLW00Q+dzALJRDi/7hxWON5XnyBBaOFZX5n12hHOrkyXI66iy9k85jdRQcM2ULjIxv98+crdagmRNW+niF5te37U6PyajNZxVK+Fl0VjQhm9O9Pj678Jen2R05zQxlztVqrvRN//RcM61WwmYWivLeSUeDIYd+6SRakYBFp7yfmzu+HKw05G8SWXhlRUlOFn17dNK5tuANvd+d+OUvKyvrp10lv7o5irlzRQyOLOuRKAnQxXKjLJRjxiwUza63bN48RNk9DSTGkKAiO2rN0w7fsmcdNczUNTjtyIusVxvj7cpRKBedXHXh9acTWJ7MVKEQBYHnqjXMwTGrZFuRUpO98WxiMVOFetcDz4anT1XryL3BKhFvwBcbDd/0LUUwYYgnVyb+sJT/4YP5t48YFblJVxzLqVnF7BvPZrBumKnKwsIPhuwnmsqz4zMHrMruUTQDKMcOhPNHK2/2zwZDoXAmLn8gePvZ5LlaHfcJzrRCfYkqJ7Q+NOPIRJmUjImF5YDP3Wim5tSSXajshfqiW72TgY3g7ssNhUK3+6ZPV6rI8DdhuWplbnVx/sPJFaAtIYMgIoQ8mXZjZQ0yU2d8r910E8tUK77d15SW0D+9pNeqzPrC1OVmPDUDKIdOFSU6Wa5sZsmN+373152BmXp9rjE+e5iizgDcnb5p7IXYfaEQ8v2T8TeaDNsn7RIUrsmXdZQp6E5ul+Uurfo8Kyv1JQUJimGQ0M2fqdPfGl3Gc4tBTjMIIR/en/tJZwmZPUwmSK3IfbVO+/XDcSxX7bKmyL4RDD2bdJ1sKk/21Eqmxu7pmUE59LjQWY2pid0Dzu3zj0zaT1Zp+dTNqJbXFuXcG5zffRs8HrFb1dTsIZ9yj1VoRqcXsDdzN+UGg6GbT6deb2K8ViYvG4Ooi436r3qpkVJyrp1TkP1yn6PdqtHlU9NTO16v1uvnl5bH55d3U1M6753Bua6G8sJ8XhbeUTFBDBlDuSY/r7bcODjt3KU5Lj+evNigU8iSjhdZ1TtZrQXg3L5dAQ4bKgYm7OfqN1d8WEVwo/KcrB+0Gj69O7qbyo7NLxsVEX0BL7RBB4zQZpf9q2tBrj78KW5/6NqQ8502I88OFe8/Pzhi+PrRBIaRu6ksGmhlLdxkM/JXNYOcGUM5rNbdaJlyrHnWNtI2x4zDIw2u1xoLeLYBDJEvzzlfq7n6dCrtQpHxdv/sSZuqILYJjI9xoV6FQSGLBNIepK35g8/G58/WJn3p5KqBQt89avrsyULa4xZk/P0j+1utxSler7nltpWrC7LDj0YXd2Ph75/NXuyslSV/2eWWm0FKxlAOnfJkuV2N1sfjS2mb42rPxJstBvQfgmrYUFIQ3VifdqT5VoCJ+XWft7VcLahQvBl/0GH64sF4eiPW3onF1lIl9ooIKhQ7HRTyrCnnuqBchBkZZ1f8x6s214wJPXUANf1Bm/Hu4Nyyx59ey8443Bq1qlSf6rU+tQ67TBWGpx0Lqy83SLJysZKXhjl6xhertLnFKr5PcKIM3qJeb9Jf753BRJXQC1lu9c2+Wq9LNjFPSuEG8HLWYpT3CL+rnZ51LHi1WdKZanityXhtyIHhA1ef1JRAKPLZ04X32rc256TmZ6ZaixTNJYrrfbPCDRxBlnsjS9h7mHrGjFlcxsMZRjkAd6q1om96RehbOSbmHg3Pv9rAXm3mWWFTodyqzu6dcghF+bMphylfYtVt3yjCr1TMXL/WZHg6avf5BQzSMNvaM7ZworJQ0LCBaIR1XywPPZ11C30NfTrjVsqya5IvQZAiuAEMli406Oed7mnh02i9E47WaosqtheDK/n5UDKMcihdWqQqNepG5lf4A45ajumbO1+nFfoEJzaiprEb9E9G7P4NAS9JeKPqm1g8W1eU9keH2F7/Sq3m7pAd2OVZ36mFVVV2BL0jUV5ooLtSOzDnEfQauroexEvnWy3GtDvUogLZ6Ur1td45TAjyrCnY1gPBiaU1LAPxf9ESag0+/JlHOerT3WiddKzzfyvH9p0ll7vTptlxrjpFldDJnanW3BqwYwGCZzPcH1lstxTwnFNLVnSXTbu86l1aXeNTKB5ZQ7OuE1WatNEGNTC4arNq7k2sYE0ymVZMOnr9G8OuKkM+dzcYk23HcDemd8PB/mkXn5qCB4uED8Yc5ztrd5yY37HoXTJkHuVQSFOQ11Fv7ZnkZQ6Mba72zv643ZR6/W/HeuLuwjT2otPtWec1fqB2xjlXkWU3txa0wrjlndbiu4N2Pp3cwMxynUHOf/YwWa0bSwuWfRvzy/5kDEy6fTXQO+fBaJBJTCOMAc9bzYabAwuYIOID9GWvPyzNxezhi+3IUdM9QTnktlSZ1sJZfGYVZ52egpxIBdmKlIb541nQZ3zQabrydJbP+OHq07nXmzEdKGyWI17Utv8VemWRQjq5uMMkD4bviy53u8DJnG0lxSN4FJyqKbo16sJjK05L/B+bUL7uWzpdrcOzLjGHEGp9aUGFToZn4I4ox5rXg3HXW8cbhIjfK969Qjk24l7orLs/tsMiEYbRGGP8uJ36Sjojl02fr8yKzLt8qZth1unNywrvuJGDv0qvNxc/mXDC10CKch+OOs5Up//uwVLGrFVge/CQ3ceis6JDC96VtQ2MBln09KJ4Y8Z0e++0C/10ipoiacbpKzMZirU7bF5ITw2hufYK5dCjvFij1WoXVtdTmANP8LYyFXYjCdU7Bf/PjpmvPZtPsdcAA/fv++Y/6CrN4HgRg/u20vze5IM0p8efGw1VGTPZ6sertPewJTeUtDvHV7NfPVt8o9mYxjxpMgvj48Bum/pa/0KKZsVL59DC2mtdtcmEPGf6HqIcExdvn2h4iJekJBfW1Sftq6/V450mlMG/Qrm001LQP5N06wUmOttKldq8rAwWClHnarWLLm+yTu7hyOKlRl1ONJzBQlHTBpPyzvhyMtDcG1/RKnKr9XkZLFQaCV9q0C0t+6YdSVdFhufdx5oqlc/xO4lkFqDpGRirpSggPy+3u7l6YGaqJvaJOHkLoed6sUr6amVedtCHuQI6iaaz2EiUFLQj28Uq+X+5tmgtylfKs0l2OhemwbA7/N9dLIn6PfQMRQppSGJl50ZJduy8ea067+q480yjiX6jJUkTi94ajUSXHYj4A6gFodM1IqVw6WAgJSasfote+o89qy1lag3neejFlpWBpb/o0kkCHvT2LOEJpYHIZCOKseh4Hr3XXPhhr/3nZyqQAalESWTx+EO+cG5n3JEQKegFBvYW5ag85kr/amDSGgrn4I0J8xGxC7ZYWPVL/d4WnSq67qEsG0uiArgYbMxoLCv1syMbAHfRIr0/7jhWayBzdnSuu0OONytzsgNeMgmXQhqVlEQZkosEoFhdYfR+hOrkynTUd7t0EgoamVn6ZVueZPt9tU1yutXHUK/bGP5+YPHddvb3TV/2LrYZovqc9eg6NRXD1BNRcrHozCgVTlL9tqLI1dxQz+Rycxm1gktaFh3WwLz3wvHWDI4GiappB/YW5VALtX3zRON3tx8ftW1NEmO8iN35P7ZFszZiL0/EmttRTvcTxNBbleTB1qKT3J1ZWVwtKC7c3OqJNsPsm9/taquWSwJeXtKIYuBOViiDjvHfeXPkt2NLxYVluKtpxPRMrZw1bsjDEUkkPmnJyEKpQUrh0pEaxxnFSV/b2coV0afz/hmXroyxgju3vD4+5/hlS440EH893Z4rLit5vcBBFKPD+I0rkxuN/rhK8lc9zqpiLOVRHRgtcH7FX1RUVFnCazsxneU5/O45ylGHOovhRo8ao3DyNf6Y3WvN9ZQpsqNBah8p6TNoWBBTsqLEHCw6K0qzAXCvmSMfjy+dbixBK4CIHXmPRpd+ZA1nhfykI98sHf/i7cSURoUT0Zm5mPygl8ijNXmBgdnVhlLqC2jMLK+5FpuaJJJgCKMfMOBiZSGlJKCDO54rljVBdjhHPVEsudI396enKmm0Qc6nj+3nSoL50lA0mLjQZNKYOhDFwMyk01FbvqRRFb0/tny8SkOXG4pEp5aDP32tKu21ZKJVZgPPA+UwwTsnG//hi1udVlRfioaftS/9vHJDEpLSaCPW5JqSqu1OzczKRQxUroyWZ4cmFlWVsU+/Zl3rRsmyFR9DU16pty5WdmaUCsdLZ9KRmURJYFNiNHraJP2boSWs4ctzpE/GHW+bA1mhWEeaQlQsiSWKFSUas+iI6rIlhshS76weA3SwDcx7NlaXGkpD0VBS/VNIo5KIPil0lkh+ZMv6jw9dNUalLuYIAIv5TTU2g2aHD+1I0c8t8DxQjspg3tRmKZ1fWcA8VN/McqfKrUbLM7sZYta4ifGf1ZzEKCw6K8pkO2eU/i/411TL0ZsPTy78eYU/yvkIgZWdGaXCKZsZqUx+WmeVVHpaF7o/4ao05us2lsx5G9Fg7HZOIWrX1e/SSj/sm6wvaUbX/cmDmQ9K13Lx8IJr6CSFMq1EhROx7Vh9XY70vDFyZ8R1sUkfDEc9YVlX/fPzskKqsGPgOaEcemDv5f/82C6Nrgdci0cr1ySMbgZw3rRyrMsjFqfouOINsFUZFp0VJXzRqDpL0p7vGphVYdDSqnBpsqgHCEnfDLCyM6MIk9KZdOQkURKgxcWyNBdK7o4uPPHk/9LqkeDRweUBM1MyHU7NtqluYmkKibRVvnhz2IknZ2l0ySz3UxZmlcKMppS2qVusLpuMSXS7UBy41y+bcuS7A+Gz3W35eYI3ThNF9i7w/FCO+nc1V//my1s/0q/CJyDe/ujBHOqGPoMO0/0ik45UEiVWEMRWqQxfGVsAWi9UrDl9WzODfKQRxWglmcoQHUiAFkiyWGU+b2gtuLHhDO7sWysj1TflBn/7bHRmXfaX5Z6VmN+QhArTepJfrv4kF6kLKMnYQD+uXrk8Kmuvs9WXFxOx+yrw/FCOanfUmb+9px3xLC2uUx0qgS+xZjJTskwmiA3lrPip1cH7Dngt3SqUyEwhjSgG5mRsXDrq5QtJrywWNKvWbi7KEOXyQGDGq4/ednYlYPdHHruoz61SF5rB6uNYGqUkeLGrlpwSQ4Tvk8BzRTk+mfvZpY6eb2df1y8D5hlvZpZN6Wae9GV7NZhmkTRER2oKw6RQwpwCDUgi/MnYEtCl0qsLir9oqnnQO/KO1YUX7gQ8e1B9Z0A6lq3XRrOK5L4zxiBgjjom0z+D1R/y5Ghaj9hMvNwukHKfZ+C5ohwVqykz9JpbplbvWQvCaIHNqpLxX5LBH9sivNnQh192FP7wrDk3R/qby84qnRtroQKkEcWQJ1mhHLp9PculLPtZnQGOiW4t+E+Zwknz0qqQUjiiqHR+CsOaH88pu+qxCib5/R1PW7FblfM8xuVYBrrtL/tFRx25neg67avf541yVP5MR9MfP58u0zi3TlkgXWasmbfsxYoSy7HorCiD7d5CltVqob2s1FVbbzlGznC9i7KyM6NEMchk0pnR7XRMbNxeUbzSSR2Uc7pW/1djRZ1ZbnnWtm6VK2qzyttFsdkY9UKQZaXhlSyp2oQtFUiqsxZ/MRf+oCqERQMW21Y0pTSizxZ/Et1uzEmPH+9S7suXTlLFF4DyIrXSWt/SO3kbB0xs6gEL0j1WzJRbvRcrSrRm0VnROJtvI/LUl//zTgPdVCeq9X896WiXrOcncnqfuFBIJl0pqxQSJYFYuUPOiM5Yaop5L4JjhktHrZ8+G3i/NrYrLoWo3VXfH5JcdeR2NmjhxRNatFo1H95xH/f7y1Uxv4q0QbbrGTdS8mcUOJAlhc4SyVpIMiO3vFq1ebLAlsx9FnoBKAfmOhqsH05O1UVdm16FSZcZa4mk/QexHT+2qxPBbrjqUWzWEU5lz7eUfTE4+kH99tmuFNKIYnSTJ+waGdlxtMMzb8473Zv3FW7iJrPqWr/OsbFmUKJajLt6u6jNJIYoqq6saPLqP1yIFBcXy+NfhMiyJJ3Vhk8n5n95JAfb1Tbz8ZYGfqJPCp3B9vVk9PXXjqb3mTapzXMIvACUo1Z4wLUfabr95M7FitjOcgImVkuwosQeLDorGmObdwedEsUbZZuHktJZG8yFd0bU9o0IHIkSYWwwMaURxcDNpDOjDPqDBX+d1UQ2MoALr54fdFs+ujH4T9uVOXGP91xRBFXIkhRYSKMvRokguNbCvd7oyUY1OR8GxBpT4eCc++lyuMsc99i2PdemKPxj0ZnRlNWf94alxWXP37Xnlua8Q4zG5p0nI4y15YZnI6X2DXdJoQyG3k0zs9sppt8XPc5XW0uwkYipLdaG3mk3f3Rn/F+c0Ma7uPSbGZIpteOwcPqC88Gs92Jr7MxC4SpIry8aWA23lMQPGIln2WTbRfXx8nd91F1dVkSfak3KxQ11vKb4m4G5OrNSnRdzx8cqlLCy6MwoUQzMTLpEgg3MlwfXfvpu09Y9SQTuv8ALQ3lOdvbJo3Xf37z/fjEGj/EObLspWZbdst5ObL2zHnWhqjyRNwi40tVrC/td0iYztknHoJ5CWvJm3tItlh263RpaOlZlSPhVzhutxl9fm6g26zddcXBKTPsmh8s+V0hWo6PGQ1v2iYVMWkWhWnV9Ovh2S2w3FatQws2iM6NJqx8dmPFWVNfAtSc9SUqE7c/AC0M5zFFaVKgzlQ46PPWm/LSbmTIrs2Gobib67fDqL05amE9wYn0MId45YvpvV4A5TR59rOH27NukJW1mRqGx7OOOtaycXKs+3luT8mIBeGBsKdfemVo736CnwMgpMb3qYwPz9XFvQ7kOL51clAN/XVX6Lx7NtFdEzVo5u1CiIUcZpBB9tsQy2LyB0BOH5M/eqiAy9nlg2wP9OeuKpjnZUnFvZh24hF0z9Qf3Oq1lhdxvZ0jt4FC3s0IDFyX09N7uyw1HJbdHsQFVm/C+oss9XaPrn/cseTZ2XxyRgEdWrlyuK8gDyhNecLVea9b88ekiNCS5dhnAEsS9SU9709bRp8Sw+zbwIlEOo6iUea31lfA/nykDreOEt/EVeHHY6oQ4opH0Sp2+Z9qzsjsvyUTwo6lVjI7gfYpQuAHcABcaDN/2L2FCnZuaBsUXCN2Z8DRaqNnDFFerVTezGuybc6dRRMIsS+7AQiC3tSpjbhcSlpJZ4gtGOSrTWl064s5a38Am0d1eeBX7x/vzPzxaknBwzJIOjwtf9C7uHnMb4UjPNByDaVPcV3TR9aWqjVB0bCn+8Q5LISFRDB9ujLjKjWrsgUsBcSTh7KsT9cbPepY2kn/qz79kmAsvu+ex0sk/zz7gfPEox5nfb59s/rRnt6cswJj2Fb9nPVgL9548rroSlX8jjKPSePCmYvnm2RI8LeKMzFRM8TT4ObrS79g94Jy+jTHnRk2pOjXE6dRKkzpXJrs5koEH5siir0CnNxuobzUO0PXiUQ5jlRSpJErdgpv6vj3tC25Jfvdg/k+6qaV1ntc7baYvny6m4SWZyMeHpC5fEL61CCV1oLhQjq8z70+spGbbMRWHcR6tNubmYAp+5wuTjGebSr/udwpyIMrVwR8MP5jxn22r4ibtc8q+QDme9e+cbPiib1enQ/XMuC3aPAyOdxw5kCYxqOQYTz+aXCUUQQEMG/7w2P52qzHFSydLIHRDx48Rzm5eCUYWfKFsGQ463RngcY5iTX5Nme4PTxZY+giKPpzy1FaV41VKUK79wLwvUA5DqJRym9XybI7xab0Q8+BV7MaI81KL4GNrMLX3eHo1PcyNLnpxU6WYzElYA8wqwnnslQFHwtQdifB7+O3QcnusI8/mfeXkZB+vLxlYXMeM545FJGTAI2vGl9Vey/aHkZB5vxH3C8phl7NtlY/nN3wBwa+h6FOvDbnw/genrELtq5TldFVovsceq9h8MP/sGFt/P+S60IgtK/wzbXI2m1VwCTThSOc19Paoq8yoU+fL49003/+FCvmpxrJ/vIfz9ARP8mDq/fa4u7ulWhY7h15whV90hn2EcryGdrZU35twCwUcfIDMuNbhozk9Y0aXAhMAACAASURBVB6xFKKjmnYJOKwHrY6xdUtZYV5ax0Fhe9OZ2qKrg06hMzyYiXo4u95sM6AT54vuOB9yNNv0AWn2Q+EjNMwLSZVqW8n+/U4iddPvI5RD0WabcSkow4xsaqWZqThv9btBx/l6fdrOnJDxTK3u2qADopiSU4QxwkHDH7WmP9WA9wF1Xs6TaWGvBPDRjK8K82Q5GN+nccER8aX2ig8f2gMhAQ9MmOX+zHp3c+UuHcynsOdeJ+0vlGM19PTRmpsTHqxd86z5oN2Ll7+qnQ7bTi2tAv6g5Tl4f03NRqfCZTjmqk9U6/i/dHLFYkX+lXr9zREXZjO5qQkpmM+Z8UqqSndYBor33Yn/24zqkmItZj/5PzCfTHvKzKX70MtKQislJO4vlENFi0GtKCwaW+L1koQnOICCE4XSGBwzzYHs5+r098aW13hgDkfLboTCOMCEKSGNsDZfdrRcfXWQ12soBtMfP1q41AEXj4LHKky8I/vbxyq/6nOt+DiOaRLVARbud4Q768uFv30kEveCaPsO5bDDmbbKh7P+9eDOndydUZdNr9Sr5Lu3HmZLmspUN4adqUXhpRM+T7BBIDUbz9QOm2Z0ybfjDA9eAzA3kq1U6dUCZg+Z4GaGdSrlqRbrx4/s1PahnS681h9rrcp/oSe87aTjzun7EeXqfEVVheXxNA77S1UBp3ejb85zqlrYGa0pJHZYNcMLXryJJuOBOtgQgr27RQUZuK9QCl5eX2sq/uSRHThOVijouLX++Mz5Zlc175nDHRgvHLX1LwYmlnypy3V5N1yRPHyQnkK3A5G0H1EOw8ER2fiqFOf3pTDit/2Lp2uL0j48kSsZZwxdaCj+9Imdm0RTMCv/dMaDEXkyhjToOLwTq7ZTKWd4Hk27ayvM+MCK2SXvJgyXIW8dq/ndwwUcdZtC5y/7nJe6G1nfZ6Tg37dJ+xTlsOyJI7U3RpNOQWCKYz0QbjIpM3jKAkRVG/LgQhajiIQNdmd0uc2cD44MFpodDf+sy/TbOzPJXgfd68EH0+vHG8zodzN4ddaaApLcu2NJN7eMLvrUBpNBvdvXj4SWfM7EF/kVReqqYjLh2ZhmwrHGPT4Oj/dvehferiuQbvjQF6HtIQozayyBLDorSpiZdIh4s075fx/Z/xXcE28XOL/qX3Z7zll1ET+1QEtykQAtEFGiCUkiAcKDAGFTRiONRgpwOK6WZiC/qNi3A8722lJ4otsibq8vSzh/trc6Kz6+3t9sLtRufmROssILduTysPuf/uAIZr22qAc2tH9RjifyyZbKr68/xNQya6b2zpgLjmRNcn+UcYAJ9XHA9otufkJnRQkvi66WRGsLg7dGXNikTngwxXFrcLHbKJEGtp3TAuGs7FQ0rglJIgFaIDd6wZL1X+/Mt5gLcUQMKRQBrHbZfZEOnWJ9fWvRis5ObhJWlGRn0VlRsBnVshK96qu+pZ90lrCcMeGjkM7mg7rSSSxAAvsX5VBRr1ZaLOZHU4vMg/ww2XdvaP6f1ANw8XFFrG8j2CJ1o78B26LzYwNsT5kk/6NnFhMg5OPovnl3QdhtgguI2H1FFUGkkQBdMKJxlKfiATODDcs8Z0tC3/QtvNO2BTgsGlxGR15lCuN0McbFwisrShhZdFaUZjteW/y7m6PdFevMByZ2H4ysSv/8TBlRkMg8oIF9jXJ0V0fryj68bG8sCZG3zG+e2o/p/PARvs39OczPaRO6XQmdFSUNxqIjik13Z02Rz54svNdeAqmBYPjJ8NzrJRtS+B6Ml0JykQAtkIry4WEoTGc5qpfc611YqNCVahW0qP55r1yRj69jiapbRTAGPLQCpGsnzCw6K0qzGbUFTVbD50+XfnkWK6rUYwRPratDy+c6mvH8pLMQgQc3sK9RDrMW5Mk6m6qujwxdaqLmszB7OD03d6E2SJ0nwQETqxk2GykttiNaye2+GUeNrlidd2fUWSNfLcyKJCw0QSmcEhPwQFcmWyz8pjn6Vc/cn52uwEYXzOfcnfK+2l4tl7NnLWlpBNasKDECi86KErZTTWV/+/UKFjixaw1EuzsQkBVWmbdGa4Tz4Ab2O8ph2VqL4fHgtMMTwOrPR/emXjd6c8JwJrwdJeCLg4Y0Bt2uhM6KpmYDht41B37/cOa9Lsv01PQPS9eTnSfBEktF45qQJBKgC00QjWUxy6N5PvvgnL7Zor49tlJRZixSFxA0sxQmdFoaiQply83NfbXN9uXjkXpTgTxXen3U88YrnUTI4QgcAJRjVvHVrrpvbtxvL1Nlr86YiwIZOGWB2XrcgTVScaKDXJI3P/ubm+GLKqcsio48tnATR3CqMTcfnlgRm1qQGyMaPV+88eGzqQJF5fhq9CftFowi0oYvC/2sKDEA6EdrzDh79dqw06JVFJeU6Ar5fvpEhOzzwAFAOSxo1KryNYa/ufL0n5d5V9fQLtumDllRYnEWnRXlw1aRF33gmC5QBVw+oDpxoVw6wSVJIgG6UG6UzkLTdQH7r67mvHX2CLY4BMPCHK6TSiHALQVEohvhpNlONFl/882jSlP0L99rJ0mHJnAwUI5Z2/NHq6/e63sYcwctqP1Iu7JykSZk0UkUoP5mIb9EHsR5EmAmdDojiZIAoXNL5PKAmclGh2m2ufWscedy33efzeVSO3kIGy0fv6mlpc2mCRV0tbTjJZRIODSBA1MldUHez944Hnn8yRFdBk5ZYLZfMtD0r2bra2qejsy9WjpfkJsUW9zsBJckiQTocrlRgnLcWr8aKzjXYlK5p961bGAJgEgjOnOzI2mXbM5AliSn8nhjOSnlMAUODMrRisebrL/qra2XDsuzqcEDGnazJVgDa9I+LDormpItIpHe9Rn+4pQBG7O+H/C+aQ4A5lQObqFcOh8elig6SzT6yJmdqzW14u1z0DDlD1sLoEi8mikV3iXb/WXtqYvtWO6lbyFS1OEIHBiU0+a+cLrr+nf2C6XbO7kYzridGY3LLboQtu/ns04fqcBIqcWifjBqtG8smpQUyhNIY4llrPBvKcDhYYmixeLIzKvOghPNGqz71ln0V8Z9v9AE6IOnt6EttTTCypttzC3NtzaXFaf/6RMpc38GDhjKK0p19w0NrvBgUd7WhB27lyWWjjXzVifHiiZn821IFrI0F0pUYAH+4Nv/+4feH1eGsrG3jfSsRBoJ0AIR5cMTE72pQjzLN9PRCksxfWqKvjBvtlDfs+JoN+5tXx4OR3s3tJda9/XBQJuGSvffAUM5hbljTVe+mn2rbGOrk4vhbKuXJbZg0VnRJGzYG3jNHj1/xAKB9OMbZ40/0BiGPY4GHcO1LJFGArTAdPvyZX+0f012vroAHTktCY48bw14G4ujipztQOeUCP60q//UGbHVN2lVmwuuxCqHKXDAUA7TGzQF6vK6qbVhuJjdbAlWq5P2YdFZ0SRsdncoS1VAltnBRd1ajcaPb3sqDLlKciYRkUYCtMB0Uf7ZoK+Ncn++NUGuUshKTfrrdtelqu2Ofjgl0kqSCm0GeLDh6KUpSeEPaqhbmp39EMUPHsph/FOt1b//2m42ZCnooyZYzUmah0VnRROxwbXn3UXPpaPsM4h1BbJKs+GR03PaBt/+sYtII4E4fQsxJIkE4jz4z2SbWd1YlkjbNAoQCR1Pkkpj4fU+b2dEWaRktFRqaXQR+OXBdm9u7eiRRngMJZkOZYBhu4NTP3yGWF1T0++Y6CiPYY7VnKQiLDormohteNZjLNIwDwYiXMcqtf/vrrcpkqejd2MTaSRAswrvy7FB6qPbMycaS+mxCkE55OGUuQar4euxlZ918TsihqiLAEcx0JjCHd4Njzy/0pyZb1iZJe+38IFEOYzYVlP60Yy9KpitVVJT2az227Qyi86KkqaI03HEQv/Sxg+OJvbMDd/+R626GxO+d9tM1NM9nmsrQAsUiHKo3jO5oioswNbyhBPhpbr84Xn3lDtiK4ovvJOi4yXiPxO+NJmrGJMN5d6Y8pzqbkzbj81mKQfh3z79Im5H02FzS1t9xaMZHw1wNPIu/yDnybQb7p7JnnKuDo2lBW5/aGbZv8uymNnhCuLyoKu7xoCOPOGFmnbVFGNzLPWF5q6rSSTgIyyl1oCtE9xqHj7KQUU5WqLWol/LUs6t+DPSKtjTC9fS+DwshTR0e6/UF+Gr6mTfaKbImzAJnTcOfqkx6+B/MCHEaaK2IE+pzHs8tUp39glFCSJC/1uTPvhoPhwfvO1Y9wOMcjyjT7RU3Zuidm/tWM/UDJBwZ2y506rZ0V2WRYsXQfmzGU9qgTxT4Ynl8dxa006npgDrx2uNX/Y6MnJ3obK4YWqrrDjHgqeeB53tAKMcpjfqVHqjsd8e/zQu3daYcKznZkvL+TnbP1OngxdpoY48uaoBsp8/XTxeZ0rRi5MkdPZHqo1fP1va/S0NzZ8shDrrD/nsIdPgBxvlqElHfXnvYgguTZi1EhSGi6kHkyudFezv55MJwQxMq6Xw2uAOXriSZSd0uILwhLIsBhWBcupAg0XXM7fuXt/2DSiRxjOAm+SbfseF7kbWB+M8sx9QtgOP8gKFrLnWdk+4t2LSYE+nV7G6Sc3V8LswUmq3agbsXszJ8MuRgAvfkn474DpRT80e8ryAy9PN5k+fLOzmMbK8FvRI8ytMugRzMgnUPCSkA49ytFZducHul8E7Txptgs8rcSJUc1mhoFaH57eLjYbPd3GACeZzNBpVUaGCJ8RptnJDoSeUPb285bVCUJVxe3w3tHLxWIOgygoqYn8yH3iUw6xwy328FV9AJ3XElcL0eOnENleFcGf7lQYl/JXCFVEK4cmSMOp4NLvWUW0UBHGa+ZVWyzd9zvROmcMcaL7OcDjcZSWzbUL6YUA5Koaz+aIK9dyKsE5uyRPAEyA93+eYjcFJ558+3sGRZ0Kj3xx1VZXpCxSCT00B0LGtSq0pxKnNCSWnIMIl4p0p37mj1Sl4DmvSIUE5xqxn2qrx/Tn/KQhw3hhywmnb1t5GgY2sy5fpVTIM0AXlm1ten3FHG8r1aXTkdJbuutJ7U15BIzRUtm/OV2krf3lmD5mNckhQjiqhkzOZS3E0BU+gwyM4PBnBTTPTHILCWIh8o9l4uc+BV0meGWmfPu11Zoyy0kY5nN9WWorvjK3wrCl0wxhpbFXSUVfGU89DxnZ4UI43qpPNFfdmAnymICi/hzg1pUrLcvkptHWxueWIRY2TtHgCjroJZUprMa8zl1PcBkcrjeMr4YVVXgcwQbdHM54jDRXYLCC0goeD//CgHO0hz80+2lR1F65MUq6GIvXJ1Gp1cX5BXgY2q52u0WHCJLWrdRoruP2uj612N5RhXX2XF45d6awvuzq8zGc1FO6yPFElPrE7HJBNoxaHCuWATlt16Yhbkvp4IKDt4dQqnH2CPw2TsbJAxqsN+u/6d15+vz22bDYZcAzVDidF8EuuNheFsvNwjjNLH1YUt8HdSd/xlqqMVJYl/KBEDxXKaaNf6m66PODCmCRhG6Ajv9y/BFxmcMdpfYlq1R+eTXmeROwQ+7XOOnOKcYjQpFMttmsjq6kPcBy2ezV6Q4k+1S60hIY6TMRDiHIzWlShWfQkHrNig5TTs0Ht1caoJnN/l5r03/Y7Uhzg+FnPItyxY4pjl2MVZnY8FswlhvsTSRcKMK2O47CPNVoPE2TTqEsGBqZplLqnWYCDC111n1+5+6NW6itKZlkYq3zbt3iptkCyEduYHkvbHMTHRy/MKBVOREc+wkYHTHlSrTzaO+NuK0/g7wET84v+7FeKC4JBaoGWzkKGEIjSYS4dzIQtpiz1w2RrrTB8fH0Ra7eqRO8YOIGsocaGiXmS9+UMHEKUoyHV+XnGkpKRpZV607ZjcWaW1/Mia7rs7Kh/a82SBk1CNFNJ/FAOtlfKs3/b56gxFnBfav/wZPFUky0cDOKPBVM6mjbKMWnSUF783YADXzCxEOzxh6bXst+rMHHvExbnoY8eTpSj2U622H73zV2LNo9gDo/v2wPzb1mj0djBQKRpM4VyfILaWBiAs/MLTUYiHAGcrhjJlhXKs/zxW4sukYAP0bRRDvk4kebrqdD8ir9Es23u/9a4u6upXn4Y/R4yzcsnfGhRjsP+mmpsPbNTJyrVNIaezayW57qV0ezo1kFUlIkyhXKIOqKT/HZkcdGiKS7cHCTgJfgPT5be6q7GmyUT1mBmRneD8lzskawxffXM/ouTZiITmx3CMpXVxHc7MWWIw3sdWpSjyZoqTJ9MzuNTN7j3X10LDk/OvWvGIRbs7bIZRDm+venURq8PLPyoywJQY5bnzvhyRZlBXUD59CEQzGxfDmllhtyh2dUhuxffraIgUG5PeM+daH+pNpGnuEkPM8oxV9jeWPmwv/9Cnezh+FKTYiUnEsHJQGxzYPCNKz7+Bka2ooxx+TY6OAgbCVDZJFUF0Z5J+/iirspYgG29+GDvTy9W0yew7R3KUe7pFuvnt/qqiwuys6VYYdUbTTh7LKaR+CM5zChH89pM2v5xrMAvr8xPnzDFTk0haI63fgb7cojEkVOndRvfPpst19dcHXQdb67IVyi4nTc4maCnw6nZ4vpSXTUrO6IGubyyvPTu+HJXpebhbOD912xEPsn40gYOOcoB6a5G2//+8Ov3NC4c7ECjg9XYmUU5pBlzpcUbc5efqef9uZdqqbFyQlwSFCJ19yiHhHNHKv/7Jzc3wtHWhko4ZtqsF6u2L2X0kKMcbbqw7J1ZWv3KmxONUnuVCLZIc6eAIMEfmJOxcekowhcKXx+eaKku/T9fPkSUy8PUhJSSmo2Pwotu/7WN6L8/y55VJHlfzsDhRzkGLUcsqh8WLMhivv2fD8qfLefMSJXuJfv7RXZF8nMsaMxlCuUYyHyeozz+9j/JzX5J9x4mu4cPP8qx8tfW1X33juOMYQ1W4KKcfo/cojNHvfGxBGU+Jp0Z5dDXwtKvnZrXW7EFfPVLR+A9y1rSvJRcSvJm6RxRSNxSLMZL82+jx3O5AtKI9ZilmDq2U7yYFjj8KMfQvKmy5NlA3XKkH4vwQA2z/lQ4hpItOjOKMOFn0pm5OPQ7izlFRmOhQnasUvPRPd+ZkjB1pgCuFKLoJI6obbmoSOxKxBaOSK+41D/6yZEEd0U830v7//CjHE2L7Synu1pvfDv3bpk/AQhioNmiM6Okl4UUJp0Z3U53rEV7fPmnKwuxDKRWyhot2n+cDP2LpjDurcRFxERtJm0XxS4RnPSViG3cnVXa2F6Yv235M57hZf//UqAcjVxu1PZaGse8vdVazjbMRKAhsEsBTYilUhnZ0WNfno9UWwz44I1KjUaxi/03t71Dno16ygNK/DHCyEIBkNxLHPpmERQT4+Kw+UOSJ37NT9qqGExicMsCLwvKsb5+sq3293+cqdRvUMcDMS8OaJC4iUiCP5CSsTHog46QS5rXWKzKiuEZr5V5sqwTtfqPxuz/Vi/PIwenMLJQipBSOPQtTSi++LWdDaX0OKNNra3Y1BDnEP9vs8DLgnJUWlOQV9PQ+GC295hl+xk6MdAkHjQjaXsHnCAaz47dYFfmPC2VevJ5JT0zWF+q7p12312SnrUpNrPHs2w2BSmFSwcHUYA03Ha2FV/InlN4qtpM0sUAywIvEcrRPXfUW/5udPpIdi6cY20ZIgaaxMMJ0suCOxlbnP5wbFWpUuNsty1RsTLwGDnTWPzlk7kjNr2G3gUez7KpAymFQwcDSxqVhcGGG+nRtK/rSH0GP33a1OoQ/XuJUI5Ww3D5bGfjlae9b7caSCPSPS4BEzOKcEI68hI2OuANhG/PbpxpKkm499CsVeq1+d+Mrr3fboK7IpKX1oGUwqWDgSiQUOEp53q4oNhWoiOpYoBrAdYQlctw2ChVpUWrWQXOtZAkKzuDf9/0O6tKNTjVLdm3m2cbjHcnPbOrwQwWGoxK78/5j7dUxt9qD1tjZao+Lx3K4ePh3VPNnz118HHbwtPK8JY44gxUl6TyslKolB2xFX3as5Cei8OEmgzMe0tKS8W9hwmNwyS+dChH5fEaqjeVji9l4BALSMMw4+NHdjjb39FdVnulfnp5Y2DeE1siYrZCOmEcSNTvCHfUWdLJ/JLleRlRjpHum9113416MtKt9s15c3LlJq0y2ViF0PNkOWebSj7tWUrtLoYnAu9OrGLvIbzJ8eR/mdleRpSjvTHZ19lcA6DQL3y7QcDvexZPNZbmYCTE46oza7Jzc28Ou3ZTIvK6fBvOUB4ct+9SzkuS/SVFOVq3vdY85c1y+dLx7U/A8eXThYZyQ35eLg+EUyxwm3Wu2Xx9ZGXJs/3jUyKRX+DGmPtEa5W495CftSQvL8oxjX22ve7G2Grar6Fef+jetK+tMulRnQmhX6IrqCrV/bF3Me3HCOWtV6M36xM4fuHZ6i8b28uLcrQ0tp5LFZrplJ7fkgEC/gfx0nm+tRynt/FzbLjJlZOTfazONOHaGFmkdgILvXBP3p9e726y4S4Vmvel5X+pUY7X0LNHq+9Nr+OcBqEImF72rwSzK0s0CTvs1ERM8nTWluAYxBQe55LpA/+6lTYL3ColYxDpXAu81CiHOYoKleayUsyTcE2TghIIhT9/snTxKDrUNJ00t9gM/kj2Q4FH26HcQVfkSM2W35UUSopJxAIvO8phiGMNliFXBF5CiVFSBzCe7pl2q7VqoSe8MTt4zCqeb7P+sRezimz/MClK/35oubulGnlT8IhJXAuIKJdgwyrOabg/6eb5OojTS3CA0Sut5UzUphG2GTVlxborA3xPx/WsBx2hvCrzy+tsnwtfnhQR5ZShGqzFbokSrgZ3tBruhOsjyy01pUo539nDZDcA3lpfbbNhThAnze5YLl52v3jmeONEI+bld2QWGVgWEE1GGQQrOqdaq26O73zyln01MLES7qgpFTSvkoy5SK3sbrB88miH4xRxa+EOVGiL8RbBaj8xyscCIso3rYQTQ/FJ8tOU52jieAt0qK8crUQ3nKyHFkQH+s80l484Q1MpZzNx2sS3w+43j9dzd+HyaWORR0T5Fga6G62P5wIb4aSzinDCL8svrMAse+YueF5+/2zD/74xneIcrL55X02ljf6WdEtdMcTbAiLKt0ylUspxxNytkeUtEiOEPYDXR92nGs2hTF+2YlW+SnV/fIVR2lYQK6x9jvDxpvItkhgSaAFxTmrLYOigG23G347MrK6HNEr2l8I3R5fLTNq8XCntbJ+ekEEWEqAFIQoiCSOQkIemE7Y32q1/f/lpsxmfYTA+1Yt9+3Z3wt3VXCN+8EbbKr1fEeXb7EZ9Mtdee/nek/fbt50ngYOB+uxrlzqMAc55EhlBeb5MajVqrgw43mwpJjcJNMMZYB6pstYi7j3c1kxCI+KIhW0x7ILKVekmnds2mXzd52i0GbZ9E83Ot9v42ebSG6OrS96tvYrUlpUpHNVZKW5Z2aVxxb6cbUBA6tWOmt99dfvnOgU98sDBQN5w9pkyPT5MJh0t6cJJgBaU3ogFYmUy2YmmMmxu+fnxMnp8MibuPWQ3TppxEeUJDFeozKuqtD6eWmwrLwyHI5cHls+2VysV1AapvUM5hHfXm//6C+fIog/H5OIU3N6FjddP2xLoJ5IEWkBEeQKD4e3xdLP1r38/3VASwR5Ak9FgMerofn1PUQ7H+q8fq/n64aC1SPlszmsrLyvMf9mP6kzQPMJJIsoT2wwL6Wfa678dGBhybPz520158s2jHfYU5RjtNFeYHg7brw46fBLFDztLEysnUgVaQER5YoMBzZhV/OLO0PxK4MOrvejdueNv5AQbl87nTqDz0mWToTwtyule/77X8e9/fkFcBkrcNsKp0giOTUs03GSJ4rYlyUUaCZRkbMnodClEQmo2otJzYwsEQ59fe9TiulqiDCcrlEvfJcofuvJyj7x9rKUK77rEyKTuCHBL3CM2FMStC60J0YEEWHQSpSWkZqOZ8cuTjfDzDIh9eSpDwfH5heMtn3w48gPVQo6EPntrc8UHDYKcVBOSAC2JgYytJA7PZl5WFhwrHZZO5dd/0GDDRhm6yWkW8Xc3FhBRvoP14Pfe0tgxNnm1Vh3bHxvrX6k8MeAC5lsBWhLofHjAzGSjw9HoLWde99l20UczbctM/Yoo39mSx1sqPpwYKZfaFdmxzpvOQbpnEojTyVNeaF++7I+uFdVXlBbtrJPIIcQCIsp3thZ61oaW1qfPVruLw3wQzIcHpTLZ6PANZ+7ZS81wCbCzTiKHEAuIKOdlrebKkk9Gy5bDdp0ivici0yOWqdVwgaXeoC3gpZDIJMQCIsp5WQufTRxtbXz8wP2qJmdzOE0GKiRAS0rr7RM9+w1X6P23a+l5FV46iUy8LSCinK+pbCXaPo151r9i0cbWIwm4SYCWlBbKseGxuq4GR5Py1UbkE2IBEeV8rYVetqu56sadR2WmfKrHJeAmAVqScJQHQ+FHruAvTlnJpAtfnUQ+fhYQUc7PTjEuo7YAjs8HF1yNZlWmUI5J8buT7q7WOkyQC1BFZBViAdGyQqwFT7l1ZXD8lobnt2TFeAKhmbXslkrT1pRLMlaRnq4FRJQLs5xKmddUa7uX5BtNYbIkkkgkenVw+XxXg9CMIr8gC4goF2Quihm7uKZ9ORk5T8Lu9kcVGrO+ULASYgYhFhBRLsRaMV64cj51tPbqUOJP/fmLC4Yi8HP0alct/ywiZ3oWEFGejt0sBnVQVuhgfKOZhpSRJV+xqUSTv/0g6TQEiVl2soCI8p0slCgd31ica6+5MpTYg0qiHGwaBjy9C6HjzVZ2ghjfAwuIKE/TqFqVQldsGlvypZe/d9ZbW12ulIsnvKVnP2G5RJQLsxfhxsTfK21VNyd8aRxLtOzbmFvPaa0sIdLEwJ5aQER5+uaFt/z66oqeGbegU2qxDPQQZ241VGBvTPplizmFWEBEuRBrcXhxjkW/IwqvEpyUzZTAGgAAAh5JREFUpITZZX9Qpqos1SXlEBMybQER5buyKFwUHWutvjfB9xwLDG8ezPg6G23i3sNd2V1gZhHlAg3GYa8vNyxuyHCYMiclAWFowas1GE06VYI0kbRnFhBRngHTvtJRe2PUjeX61LLgbL9nfqOrXvTRnNpOmU8VUZ4Bm5boCuXqounl9dSy7o6vNNbaVOJRnanNtAepIsozY9QzR6ruTOFUw6TnWMDJ/7Qvu7HClJnyRClCLCCiXIi1kvPCoUV5mXnAnnSR6Nrw8sm2WtFdVnIT7mGKiPKMGbez3jLsivgCCU6pdXo31nNUlmJ1xgoTBQmxgIhyIdZKyZsnz22osT6eTnDY+XfDK9j3IrqgSGm/PUwUUZ5J4zbYil1hOY5nYQqdcKwV6sWjOpkmed5hEeWZtHhudnZ7Q8XD6a3TcbEM9P2Y59zRavGDt0waWqAsEeUCDbYTu8WokSo1k05qVhHz531zntoqm0LGPnFuJzFieiYtIKI8k9aELCzdH2u0PZpdRy8eCIZ7sIlcPKozwzYWLE70VCHYZDtm0GsKTKWlz+aWVtZCXS01oo/mHS221wxiX74nFm6vLbsz5bcHZI224j0pQBQqxAJiXy7EWrx58xWy1443KeTicJy3yfaSUUT5Xlm3ylwkHiaxV8YVKFdEuUCD8WYXpw55m2rPGcVx+Z6bWCzghVtARPkLbwJRgT23gIjyPTexWMALt8D/B0jfJ7bWVyGIAAAAAElFTkSuQmCC" alt="" />

输入格式

第一排为n。
    接下来n排,第i排有2*i-1个有效字符(‘#’或‘-’,分别表示此同学穿冬季校服或穿夏季校服)。输入文件中出现空格,且空格只是为了保持整个三角形的形状。

输出格式

输出人数。

测试样例1

输入


#-##----# 
-----#- 
---#- 
-#- 
-

输出

9

备注

n<=100

注意三角形只能小头朝下
#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn = ;
int n,a[maxn][maxn],f[maxn][maxn],ans,sum[maxn];
int main(){
cin>>n;
char cmd;
sum[] = ;
for(int i = ;i <= n;i++){
for(int l = ;l <= *(n-i) + ;l++){
int j = i + l - ;
scanf("%c",&cmd);
while(cmd != '-' && cmd != '#') scanf("%c",&cmd);
if(cmd == '#') a[i][j] = ;
else a[i][j] = ;
}
}
for(int i = ;i <= * n - ;i += ) sum[i] = sum[i-] + i;
for(int i = ;i <= n;i++){
for(int l = ;l <= *(n-i) + ;l++){
int j = i + l - ;
if(a[i][j] == ) f[i][j] = ;
if(l & )
if(a[i][j] == && a[i][j+] == && a[i][j+] == && a[i+][j+] == ) f[i][j] = ;
ans = max(ans,f[i][j]);
}
}
for(int k = ;k <= * n - ;k += ){
for(int i = ;i <= n;i++){
for(int l = ;l <= *(n-i) + ;l++){
int j = i + l - ;
if((l & ) && f[i][j] >= k - && f[i][j+] >= k - && f[i+][j+] >= k - ){
f[i][j] = k;
ans = max(ans,k);
}
}
}
}
cout<<sum[ans];
return ;
}

tyvj1192 迎春舞会之集体舞的更多相关文章

  1. VJP1063 迎春舞会之集体舞(DP)

    我是被这题彻底折腾惨了 .. DP很简单 不用说了 重点是必须按它那个图说来来划分三角形 而不是随便撇下一部分 随便划下一个三角形就可以 所以 要判断J是第奇数个点才可以 #include <i ...

  2. 【洛谷P1538】迎春舞会之数字舞蹈

    迎春舞会之数字舞蹈 题目链接 一道奇怪的模拟题, 先将样例输出复制下来,观察观察 -- -- -- -- -- -- -- -- ① | | | | | | | | | | | | | | ② | | ...

  3. VIJOS-P1064 迎春舞会之数字舞蹈

    洛谷 P1538 迎春舞会之数字舞蹈 洛谷传送门 JDOJ 1245: VIJOS-P1064 迎春舞会之数字舞蹈 JDOJ传送门 Description ​ 在越来越讲究合作的时代,人们注意的更多的 ...

  4. 洛谷P1538迎春舞会之数字舞蹈

    题目背景 HNSDFZ的同学们为了庆祝春节,准备排练一场舞会. 题目描述 在越来越讲究合作的时代,人们注意的更多的不是个人物的舞姿,而是集体的排列. 为了配合每年的倒计时,同学们决定排出——“数字舞蹈 ...

  5. 洛谷 P1538 迎春舞会之数字舞蹈

    题目背景 HNSDFZ的同学们为了庆祝春节,准备排练一场舞会. 题目描述 在越来越讲究合作的时代,人们注意的更多的不是个人物的舞姿,而是集体的排列. 为了配合每年的倒计时,同学们决定排出——“数字舞蹈 ...

  6. P1538 迎春舞会之数字舞蹈

    题目背景 HNSDFZ的同学们为了庆祝春节,准备排练一场舞会. 题目描述 在越来越讲究合作的时代,人们注意的更多的不是个人物的舞姿,而是集体的排列. 为了配合每年的倒计时,同学们决定排出——“数字舞蹈 ...

  7. tyvj1191 迎春舞会之三人组舞

    背景     HNSDFZ的同学们为了庆祝春节,准备排练一场舞 描述     n个人选出3*m人,排成m组,每组3人.    站的队形——较矮的2个人站两侧,最高的站中间.    从对称学角度来欣赏, ...

  8. Vijos 1061 迎春舞会之三人组舞(DP)

    题目链接 经典DP问题,通过问题,看出结论,然后倒序,然后注意条件. #include <cstdio> #include <cstring> #include <ios ...

  9. Vijos P1063 迎春舞会之交谊舞 DP

    题目链接:https://vijos.org/p/1063 题意:有n(n <= 100)行,每行有2*i-1个可显字符'#'与'-',组成一个倒三角形,问由'-'组成的最大三角形的'-'的个数 ...

随机推荐

  1. [django]用户认证中只允许登陆用户访问(网页安全问题)

    当设计一个重要网页时,一般要求未从登陆界面访问的用户不能进入其他页面,那么需要如何设置呢? 如下 django中的url.py urlpatterns = [    url(r'^$', 'login ...

  2. Core 开发-Logging 使用NLog

    ASP.NET Core 开发-Logging 使用NLog 写日志文件   ASP.NET Core 开发-Logging 使用NLog 写日志文件. NLog 可以适用于 .NET Core 和 ...

  3. [转载]python:open/文件操作

    open/文件操作f=open('/tmp/hello','w') #open(路径+文件名,读写模式) #读写模式:r只读,r+读写,w新建(会覆盖原有文件),a追加,b二进制文件.常用模式 如:' ...

  4. Java程序设计之裴波拉切那数列(兔子一年的数量)

    题目:古典问题:有一对兔子,从出生后第3个月起每个月都生一对兔子,小兔子长到第三个月后每个月又生一对兔子,假如兔子都不死,问每个月的兔子总数为多少? 1.程序分析: 兔子的规律为数列1,1,2,3,5 ...

  5. AFNetWorking3.0源码分析

    分析: AFNetWorking(3.0)源码分析(一)——基本框架 AFNetworking源码解析 AFNetworking2.0源码解析<一> end

  6. DayOfWeek

    int a  =(int)oneDate.DayOfWeek;  返回的直接就是 1,2,3,4,5,6,  星期日返回的是0

  7. SSH加固

    1.修改ssh默认端口 vi /etc/ssh/sshd_config  中Port:service ssh restart 2.安装denyhosts,应对暴力破解ssh. A.直接 apt-get ...

  8. cf Round 603

    A.Alternative Thinking(思维) 给出一个01串,你可以取反其中一个连续子串,问取反后的01子串的最长非连续010101串的长度是多少. 我们随便翻一个连续子串,显然翻完之后,对于 ...

  9. 如何理解vue.js组件的作用域是独立的

    vue.js组件的作用域是独立,可以从以下三个方面理解: 1.父组件模板在父组件作用域内编译,父组件模板的数据用父组件内data数据:2.子组件模板在子组件作用域内编译,子组件模板的数据用子组件内da ...

  10. [Bundling and Minification ] 四、总结

    一.ASP.NET MVC 里面提供了一个默认的绑定集合BundleTable.Bundles 位于System.Web.Optimization下的静态类BundleTable中的一个静态变量.以下 ...