题目描述

给出两个n位10进制整数x和y,你需要计算x*y。

输入

第一行一个正整数n。 第二行描述一个位数为n的正整数x。 第三行描述一个位数为n的正整数y。

输出

输出一行,即x*y的结果。

样例输入

1
3
4

样例输出

12


题解

裸的FFT

然而压位会导致精度误差,很难改正,所以最好不要压位。

(我就是因为压位WA了无数次QAQ)

#include <cstdio>
#include <cmath>
#include <algorithm>
#define N 1 << 20
#define pi acos(-1)
using namespace std;
struct data
{
double x , y;
data() {x = y = 0;}
data(double x0 , double y0) { x = x0 , y = y0;}
data operator +(const data a)const {return data(x + a.x , y + a.y);}
data operator -(const data a)const {return data(x - a.x , y - a.y);}
data operator *(const data a)const {return data(x * a.x - y * a.y , x * a.y + y * a.x);}
}a[N] , b[N] , c[N];
char sa[N] , sb[N];
int ans[N];
void fft(data *a , int n , int flag)
{
int i , j , k = 0;
for(i = 0 ; i < n ; i ++ )
{
if(i > k) swap(a[i] , a[k]);
for(j = (n >> 1) ; (k ^= j) < j ; j >>= 1);
}
for(k = 2 ; k <= n ; k <<= 1)
{
data wn(cos(2 * pi * flag / k) , sin(2 * pi * flag / k));
for(i = 0 ; i <= n ; i += k)
{
data t , w(1 , 0);
for(j = 0 ; j < (k >> 1) ; j ++ , w = w * wn)
{
t = w * a[i + j + (k >> 1)];
a[i + j + (k >> 1)] = a[i + j] - t;
a[i + j] = a[i + j] + t;
}
}
}
}
int main()
{
int n , i , len;
scanf("%d%s%s" , &n , sa + 1 , sb + 1);
for(i = n ; i > 0 ; i -- )
a[n - i].x = a[n - i].x * 10 + sa[i] - '0' , b[n - i].x = b[n - i].x * 10 + sb[i] - '0';
for(len = 1 ; len <= (n << 1) ; len <<= 1);
fft(a , len , 1) , fft(b , len , 1);
for(i = 0 ; i < len ; i ++ ) c[i] = a[i] * b[i];
fft(c , len , -1);
for(i = 0 ; i < len ; i ++ ) ans[i] = (int)((c[i].x + 0.5) / len);
for(i = 0 ; i < len ; i ++ ) ans[i + 1] += ans[i] / 10 , ans[i] %= 10;
for(i = len - 1 ; i && !ans[i] ; i -- );
for( ; ~i ; i -- ) printf("%d" , ans[i]);
printf("\n");
return 0;
}

【bzoj2179】FFT快速傅立叶 FFT的更多相关文章

  1. 【bzoj2179】FFT快速傅立叶 FFT模板

    2016-06-01  09:34:54 很久很久很久以前写的了... 今天又比较了一下效率,貌似手写复数要快很多. 贴一下模板: #include<iostream> #include& ...

  2. 【BZOJ 2179】 2179: FFT快速傅立叶 (FFT)

    2179: FFT快速傅立叶 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 3308  Solved: 1720 Description 给出两个n位 ...

  3. bzoj 2179: FFT快速傅立叶 -- FFT

    2179: FFT快速傅立叶 Time Limit: 10 Sec  Memory Limit: 259 MB Description 给出两个n位10进制整数x和y,你需要计算x*y. Input ...

  4. BZOJ2179:FFT快速傅立叶(FFT)

    Description 给出两个n位10进制整数x和y,你需要计算x*y. Input 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位数为n的正整数y. Output 输出 ...

  5. BZOJ2179: FFT快速傅立叶 FFT实现高精度乘法

    Code: #include <cstdio> #include <algorithm> #include <cmath> #include <cstring ...

  6. BZOJ 2179 FFT快速傅立叶 ——FFT

    [题目分析] 快速傅里叶变换用于高精度乘法. 其实本质就是循环卷积的计算,也就是多项式的乘法. 两次蝴蝶变换. 二进制取反化递归为迭代. 单位根的巧妙取值,是的复杂度成为了nlogn 范德蒙矩阵计算逆 ...

  7. bzoj 2179 FFT快速傅立叶 —— FFT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2179 默写板子,注释的是忘记的地方. 代码如下: #include<iostream& ...

  8. 【BZOJ2179】FFT快速傅立叶

    [BZOJ2179]FFT快速傅立叶 Description 给出两个n位10进制整数x和y,你需要计算x*y. Input 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位 ...

  9. [bzoj2179]FFT快速傅立叶_FFT

    FFT快速傅立叶 bzoj-2179 题目大意:给出两个n位10进制整数x和y,你需要计算x*y. 注释:$1\le n\le 6\times 10^4$. 想法: $FFT$入门题. $FFT$实现 ...

随机推荐

  1. noip模拟赛#39

    昨晚打开的题想了一会发现都不会后决定慢慢想.然后早上开校会的时候莫名其妙的都想出来了... T1:m=100,ai=50000,i<=5.1到m的数每个数只能用一次,判断是否能够有这些数的某些数 ...

  2. a low memory warning should only destroy the layer’s bitmap

    https://stablekernel.com/view-controller-in-ios-6/ Some of you may have noticed that your view contr ...

  3. Ubuntu中文乱码问题

    版本 Ubuntu 14.1 系统安装完成后,中文都显示成了乱码 终端或者命令行里输入 sudo apt-get install zhcon 等安装完即可~ 运行的时候记得要加载vgz驱动和utf8支 ...

  4. BZOJ 1229: [USACO2008 Nov]toy 玩具

    BZOJ 1229: [USACO2008 Nov]toy 玩具 标签(空格分隔): OI-BZOJ OI-三分 OI-双端队列 OI-贪心 Time Limit: 10 Sec Memory Lim ...

  5. PHP读取文件的常见方法

    整理了一下PHP中读取文件的几个方法,方便以后查阅. 1.fread string fread ( int $handle , int $length ) fread() 从 handle 指向的文件 ...

  6. 三种序列化方式存取redis的方法

    常见的的序列化反序列方式的效率: protoBuf(PB) > fastjson > jackson > hessian > xstream > java 数据来自于:h ...

  7. 【转】mongoDB 学习笔记纯干货(mongoose、增删改查、聚合、索引、连接、备份与恢复、监控等等)

    mongoDB 学习笔记纯干货(mongoose.增删改查.聚合.索引.连接.备份与恢复.监控等等) http://www.cnblogs.com/bxm0927/p/7159556.html

  8. java链接MySQL数据库时使用com.mysql.jdbc.Connection的包会出红线问题 java.lang.ClassNotFoundException: com.mysql.jdbc.Driver问题

    package com.swift; //这里导入的包是java.sql.Connection而不是com.mysql.jdbc.Connection import java.sql.Connecti ...

  9. Vue项目中遇到的一些问题总结

    一.开发环境使用Ajax请求,报错  网上查的资料,在config中的index.js这样设置 proxyTable:{ '/api':{ target:'', //此处为你的API接口地址 chan ...

  10. linux中管道(pipe)一谈

    /*********************************************** 管道(pipe)是Linux上进程间通信的一种方式,其是半双工(数据流只能在一个方向上流动(还需要经过 ...