题目

为了报答小 C 的苹果, 小 G 打算送给热爱美术的小 C 一块画布, 这块画布可 以抽象为一个长度为 \(N\) 的序列, 每个位置都可以被染成 \(M\) 种颜色中的某一种.

然而小 C 只关心序列的 \(N\) 个位置中出现次数恰好为 \(S\) 的颜色种数, 如果恰 好出现了 \(S\) 次的颜色有 \(K\) 种, 则小 C 会产生 \(W_k\) 的愉悦度.

小 C 希望知道对于所有可能的染色方案, 他能获得的愉悦度的和对 1004535809 取模的结果是多少.

输入格式

从标准输入读入数据. 第一行三个整数 \(N, M, S\).

接下来一行 \(M + 1\) 个整数, 第 \(i\) 个数表示 \(W_{i-1}\)

​ .

输出格式

输出到标准输出中. 输出一个整数表示答案.

输入样例

8 8 3

3999 8477 9694 8454 3308 8961 3018 2255 4910

输出样例

524070430

提示

特殊性质: \(\forall 1 \le i \le m, W_i = 0\)

对于 \(100\%\) 的数据, 满足 \(0 \le W_i < 10045358090\)

题解

令\(E = min(\lfloor \frac{N}{S} \rfloor,M)\)

我们枚举有几种颜色有\(K\)次,那么剩余的就不能有\(K\)次,利用容斥我们可以得出式子:

\[ans = \sum\limits_{i = 0}^{E} w[i]{M \choose i} {N \choose iS} \frac{(iS)!}{(S!)^{i}} \sum\limits_{j = 0}^{E - i} (-1)^{j} {M - i \choose j} {N - iS \choose jS} \frac{(jS)!}{(S!)^{j}} (M - i - j)^{N - iS - jS}
\]

那个\((M - i - j)^{N - iS - jS}\)非常不好处理,我们考虑转化一下:

\[ans = \sum\limits_{i = 0}^{E} w[i]{M \choose i} {N \choose iS} \frac{(iS)!}{(S!)^{i}} \sum\limits_{j = i}^{E} (-1)^{j - i} {M - i \choose j - i} {N - iS \choose jS - iS} \frac{(jS - iS)!}{(S!)^{j - i}} (M - j)^{N - jS}
\]

然后展开组合数,分子分母对消,剩余如下:

\[ans = \sum\limits_{i = 0}^{E} w[i]\frac{M!N!}{i!} \sum\limits_{j = i}^{E} \frac{(-1)^{j - i}(M - j)^{N -jS}}{(j - i)!(M - j)!(N - jS)!(S!)^{j}}
\]

我们交换一下\(i,j\)的位置,经整理得:

\[ans = \sum\limits_{j = 0}^{E} \frac{M!N!(M-j)^{N - jS}}{(M - j)!(N - jS)!(S!)^{j}} \sum\limits_{i = 0}^{j} \frac{w[i]}{i!} * \frac{(-1)^{j - i}}{(j - i)!}
\]

左边是只与\(j\)有关的式子,右边是\(f(x) = \frac{w[x]}{x!}\)与\(g(x) = \frac{(-1)^{x}}{x!}\)的卷积

NTT即可

\(1004535809\)的原根是\(3\)

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 100005,maxm = 10000005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
const int G = 3,P = 1004535809;
int qpow(int a,int b){
int ans = 1;
for (; b; b >>= 1,a = 1ll * a * a % P)
if (b & 1) ans = 1ll * ans * a % P;
return ans;
}
int fac[maxm],fv[maxm],inv[maxm];
int L,R[maxn << 2],f[maxn << 2],g[maxn << 2],n,m;
int N,M,S,W[maxn];
void NTT(int* a,int F){
for (int i = 0; i < n; i++) if (i < R[i]) swap(a[i],a[R[i]]);
for (int i = 1; i < n; i <<= 1){
int gn = qpow(G,(P - 1) / (i << 1));
for (int j = 0; j < n; j += (i << 1)){
LL g = 1,x,y;
for (int k = 0; k < i; k++,g = 1ll * g * gn % P){
x = a[j + k]; y = 1ll * g * a[j + k + i] % P;
a[j + k] = (x + y) % P; a[j + k + i] = (x - y + P) % P;
}
}
}
if (F == 1) return;
int nv = qpow(n,P - 2); reverse(a + 1,a + n);
for (int i = 0; i < n; i++) a[i] = 1ll * a[i] * nv % P;
}
void init(){
int E = max(N,M);
fac[0] = 1;
for (int i = 1; i <= E; i++) fac[i] = 1ll * fac[i - 1] * i % P;
inv[0] = inv[1] = 1;
for (int i = 2; i <= E; i++) inv[i] = 1ll * (P - P / i) * inv[P % i] % P;
fv[0] = 1;
for (int i = 1; i <= E; i++) fv[i] = 1ll * fv[i - 1] * inv[i] % P;
}
void solve(){
int t,E = min(M,N / S);
for (int i = 0; i <= E; i++){
t = (i & 1) ? -1 : 1;
f[i] = 1ll * W[i] * fv[i] % P;
g[i] = 1ll * t * fv[i] % P;
}
L = 0; m = E + E;
for (n = 1; n <= m; n <<= 1) L++;
for (int i = 1; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1));
NTT(f,1); NTT(g,1);
for (int i = 0; i < n; i++) f[i] = 1ll * f[i] * g[i] % P;
NTT(f,-1);
int ans = 0,tmp;
for (int i = 0; i <= E; i++){
tmp = 1ll * fac[M] * fac[N] % P * qpow(M - i,N - i * S) % P;
tmp = 1ll * tmp * fv[N - i * S] % P * fv[M - i] % P * qpow(fv[S],i) % P;
ans = (ans + 1ll * tmp * f[i] % P) % P;
}
printf("%d\n",(ans % P + P) % P);
}
int main(){
N = read(); M = read(); S = read();
for (int i = 0; i <= M; i++) W[i] = read();
init();
solve();
return 0;
}

BZOJ5306 [HAOI2018]染色 【组合数 + 容斥 + NTT】的更多相关文章

  1. P4491 [HAOI2018]染色 广义容斥 NTT 生成函数

    LINK:染色 算是比较常规的广义容斥. 算恰好k个 可以直接转成至少k个. 至少k个非常的好求 直接生成函数. 设\(g_k\)表示至少有k个颜色是满足的 那么有 \(g_k=C(m,k)\frac ...

  2. [HAOI2018]染色(容斥+NTT)

    补充一篇详细得不能再详细的题解,比如让我自己看懂. 可能与前面的题解有些相同,我想补充一下自己的想法. 显然,最多 \(K\) 最大为 \(N=min(\lfloor \frac nS\rfloor, ...

  3. HAOI 2018 染色(容斥+NTT)

    题意 https://loj.ac/problem/2527 思路 设 \(f(k)\) 为强制选择 \(k\) 个颜色出现 \(s\) 种,其余任取的方案数. 则有 \[ f(k)={m\choos ...

  4. [BZOJ5306] [HAOI2018]染色(容斥原理+NTT)

    [BZOJ5306] [HAOI2018]染色(容斥原理+NTT) 题面 一个长度为 n的序列, 每个位置都可以被染成 m种颜色中的某一种. 如果n个位置中恰好出现了 S次的颜色有 K种, 则小 C ...

  5. P4491 [HAOI2018]染色 容斥+NTT

    $ \color{#0066ff}{ 题目描述 }$ 为了报答小 C 的苹果, 小 G 打算送给热爱美术的小 C 一块画布, 这块画布可 以抽象为一个长度为 \(N\) 的序列, 每个位置都可以被染成 ...

  6. BZOJ5306 HAOI2018染色(容斥原理+NTT)

    容易想到枚举恰好出现S次的颜色有几种.如果固定至少有i种恰好出现S次,那么方案数是C(M,i)·C(N,i*S)·(M-i)N-i*S·(i*S)!/(S!)i,设为f(i). 于是考虑容斥,可得恰好 ...

  7. [acmm week12]染色(容斥定理+组合数+逆元)

    1003 染色         Time Limit: 1sec    Memory Limit:256MB Description 今天离散数学课学了有关树的知识,god_v是个喜欢画画的人,所以他 ...

  8. Codeforces 100548F - Color (组合数+容斥)

    题目链接:http://codeforces.com/gym/100548/attachments 有n个物品 m种颜色,要求你只用k种颜色,且相邻物品的颜色不能相同,问你有多少种方案. 从m种颜色选 ...

  9. [BZOJ5306][HAOI2018]染色

    bzoj luogu Description 给一个长度为\(n\)的序列染色,每个位置上可以染\(m\)种颜色.如果染色后出现了\(S\)次的颜色有\(k\)种,那么这次染色就可以获得\(w_k\) ...

随机推荐

  1. web跨域及cookie相关知识总结

    原文:web跨域及cookie相关知识总结   之前对于跨域相关的知识一致都很零碎,正好现在的代码中用到了跨域相关的,现在来对这些知识做一个汇总整理,方便自己查看,说不定也可能对你有所帮助. 本篇主要 ...

  2. 在DOS界面下快速进入目录的技巧

    在DOS界面如果想进入某一目录还是比较困难的,尤其是有长目录名和中文目录名的时候. 比如:要进入“D:/工具箱/杀毒软件”这个目录. 1.在Windows下进入这个目录. 2.在地址栏输入 C:/WI ...

  3. java web用户登录界面

    做这次实验,主要用到了mysql  java web 的 内容 实验代码: IUserDao.java package com.jaovo.msg.dao; import java.util.List ...

  4. 第三篇、Swift基础学习

    1.常量与变量 什么是常量和变量 在Swift中规定:在定义一个标识符时必须明确说明该标识符是一个常量还是变量 使用let来定义常量,定义之后不可以修改 使用var来定义变量,定义之后可以修改 变量的 ...

  5. linux 下备份mysql数据库

    今天老板让备份数据库没办法自己折腾吧,下面把折腾的结果总结总结. 数据库备份思路: 1.编写脚本 2.执行脚本  哈哈,是不是很简单,打开冰箱,放入大象,关上.下面我是具体操作. 一.编写脚本 1.设 ...

  6. 使用paramiko报错:CryptographyDeprecationWarning: Support for unsafe construction of public numbers from encoded data will be removed in a future version. Please use EllipticCurvePublicKey.from_encoded_poi

    1.paramiko不支持cryptography-2.6.1 pip3 uninstall cryptography==2.6.1 2.paramiko 支持cryptography-2.4.2 p ...

  7. JAVA连接数据库,并写入到txt文件

    package Hello; import java.io.BufferedReader;import java.io.BufferedWriter;import java.io.File;impor ...

  8. Susan Sontag【苏珊·桑塔格】

    Sunsan Sontag Sunsan Sontag was one of the most noticeable figures in the world of literature. 苏珊·桑塔 ...

  9. windows7下将Cygwin加入右键菜单,并从当前目录打开

    第一步:修改windows注册表 1·开始->运行(或者win键+R),输入REGEDIT,回车,打开注册表编辑器: 2·找到HKEY_CLASSES_ROOT\Directory\Backgr ...

  10. 机顶盒demux的工作原理

    在机顶盒中demux部分相对来说是比较复杂的部分,对于机顶盒软件开发的新手来说通常在这里会遇到一些困难,今天特意研究了一下驱动层代码,有一点自己的理解,因此写下来记录一下学习过程. 机顶盒中数据是如何 ...