抄书 Richard P. Stanley Enumerative Combinatorics Chapter 2 Sieve Methods
2.1 Inclusion-Exclusion
Roughly speaking, a "sieve method" in enumerative combinatorics is a method for determining the cardinality of a set $S$ that begins with a larger set and somehow subtracts off or cancels out unwanted elements. Sieve methods have two basic variations: (1) We can first approximate our answer with an overcount, and then subtract off an overcounted approximation of our original error, and so on, until after finitely many steps we have "converged" to the correct answer. This method is the combinatorial essence of the Principle of Inclusion-Exclusion, to which this section and the next four are devoted. (2) The elements of the larger set can be weighted in a natural combinatorial way so that the unwanted elements cancel out, leaving only the original set $S$. We discuss this technique in Sections 2.6 and 2.7.
The Principle of Inclusion-Exclusion is one of the fundamental tools of enumerative combinatorics. Abstractly, the Principle of Inclusion-Exclusion amounts to nothing more than computing the inverse of a certain matrix. As such, it is simply a minor result in linear algebra. The beauty of the principle lies not in the result itself, but rather in its wide applicability. We will give several examples of problems that can be solved by Inclusion-Exclusion, some in a rather subtle way. First, we state the principle in its purest form.
2.1.1 Theorem. Let $S$ be an $n$-set. Let $V$ be the $2^n$-dimensional vector space (over some filed $K$) of all functions $f\colon 2^S\to K$. Let $\phi\colon V\to V$ be the linear transformation defined by
\begin{equation}
\phi f(T) = \sum_{Y\supseteq T} f(Y), \text{ for all $T\subseteq S$.}
\end{equation}
Then $\phi^{-1}$ exists and is given by
\begin{equation}
\phi^{-1}f(T) = \sum_{Y\supseteq T} (-1)^{\#(Y-T)}f(Y), \text{ for all $T\subseteq S$.}
\end{equation}
Proof. Define $\psi\colon V\to V$ by $\psi f(T) = \sum_{Y\supseteq T}(-1)^{\#(Y-T)}f(Y)$. Then (composing functions right to left)
\begin{aligned}
\phi\psi f(T) &= \sum_{Y\supseteq T}(-1)^{\#(Y-T)}\phi f(Y) \\
&= \sum_{Y\supseteq T} (-1)^{\#(Y-T)}\sum_{Z\supseteq Y} f(Z)\\
&= \sum_{Z\supseteq T} \left(\sum_{Z\supseteq Y\supseteq T} (-1)^{\#(Y-T)}\right) f(Z).
\end{aligned}
注:"composing functions right to left" 的意思应当是:$\phi\psi f(T)$ 的操作顺序是 $\phi$ 先作用于 $f$,$\psi$ 再作用于 $\phi f$ 。这里采用的顺序跟通常函数复合的操作顺序不同,有点奇怪。
Setting $m = \# (Z- T)$, we have
\begin{equation*}
\sum_{\substack{Z\supseteq Y \supseteq T\\ (Z,T\ \mathrm{fixed})}} (-1)^{\#(Y-T)} = \sum_{i = 0}^{m} (-1)^{i}\binom{m}{i} = \delta_{0m},
\end{equation*}
so $\phi\psi\, f(T) = f(T)$. Hence, $\phi\psi f = f$, so $\psi = \phi^{-1}$.
注: 从证明过程可以看出,将 $\supseteq$ 换成任意偏序关系 $\le$,上述定理都成立。
The following is the usual combinatorial situation involving Theorem 2.1.1. We think of $S$ as being a set of properties that the elements of some given set $A$ of objects may or may not have. For any subset $T$ of $S$, let $f_=(T)$ be the number of objects in $A$ that have exactly the properties in $T$ (so they fail to have the properties in $\overline T = S - T$). More generally, if $w\colon A\to K$ is any weight function on $A$ with values in a field (or abelian group) $K$, then one could set $f_=(T) = \sum_x w(x)$, where $x$ ranges over all objects in $A$ having exactly the properties in $T$. Let $f_\ge(T)$ be the number of objects in $A$ that have at least the properties in $T$. Clearly then,
\begin{equation}
f_\ge(T) = \sum_{Y\supseteq T} f_=(Y). \label{E:f_\ge(T)}
\end{equation}
Hence by Theorem 2.1.1,
\begin{equation}
f_=(T) = \sum_{Y\supseteq T}(-1)^{\#(Y-T)}f_\ge(Y). \label{E:4}
\end{equation}
In particular, the number of objects having none of the properties in $S$ is given by
\begin{equation}
f_=(\emptyset) = \sum_{Y}(-1)^{\#Y}f_\ge(Y), \label{E:5}
\end{equation}
where $Y$ ranges over all subsets of $S$. In typical applications of the Principle of Inclusion-Exclusion, it will be relatively easy to compute $f_\ge(Y)$ for $Y\subseteq S$, so equation \eqref{E:4} will yield a formula for $f_=(T)$.
In equation \eqref{E:4} one thinks of $f_\ge(T)$ (the term indexed by $Y = T$) as being a first approximation to $f_=(T)$. We then subtract
\begin{equation*}
\sum_{\substack{Y\supseteq T\\ \#(Y-T) = 1}} f_\ge(Y),
\end{equation*}
to get a better approximation. Next we add back in
\begin{equation*}
\sum_{\substack{Y\supseteq T\\ \#(Y-T) = 2}} f_{\ge}(Y),
\end{equation*}
and so on, until finally reaching the explicit formula \eqref{E:4}. This reasoning explains the terminology "Inclusion-Exclusion."
Perhaps the most standard formulation of the Principle of Inclusion-Exclusion is one that dispenses with the set $S$ of properties per se, and just considers subsets of $A$. Thus, let $A_1, \dots, A_n$ be subsets of a finite set $A$. For each subset $T$ of $[n]$, let
\begin{equation*}
A_T = \bigcap_{i\in T} A_i
\end{equation*}
(with $A_\emptyset = A$), and for $0\le k\le n$ set
\begin{equation}
S_k = \sum_{\#T = k} \# A_T, \label{E:S_k}
\end{equation}
the sum of the cardinalities, or more generally the weighted cardinalities
\begin{equation*}
w(A_T) = \sum_{x\in A_T} w(x),
\end{equation*}
of all $k$-tuple intersections of the $A_i$'s. Think of $A_i$ as defining a property $P_i$ by the condition that $x\in A$ satisfites $P_i$ if and only if $x\in A_i$. Then $A_T$ is just the set of objects in $A$ that have at least the properties in $T$, so by \eqref{E:5} the number $\#(\overline{A_1} \cap \dots \cap\overline{A_n})$ of elements of $A$ lying in none of the $A_i$'s is given by
\begin{equation}
\#(\overline{A_1} \cap \dots \cap\overline{A_n}) = S_0 - S_1 + S_2 - \dots + (-1)^{n}S_n, \label{E:7}
\end{equation}
where $S_0 = \#A_{\emptyset} = \#A$.
The Principle of Inclusion-Exclusion and its various reformulations can be dualized by interchanging $\cap$ and $\cup$, $\subseteq$ and $\supseteq$, and so on, throughout. The dual form of Theorem 2.1.1 states that if
\[
\widetilde{\phi} f(T) = \sum_{Y\subseteq T} f(Y), \quad \text{for all $T\subseteq S$},
\]
then $\widetilde{\phi}^{-1} f(T)$ exists and is given by
\begin{equation*}
\widetilde{\phi}^{-1} f(T) = \sum_{Y\subseteq T} (-1)^{\#(T-Y)} f(Y), \quad\text{for all $T \subseteq S$}.
\end{equation*}
Similarly, if we let $f_\le(T)$ be the (weighted) number of objects of $A$ having at most the properties in $T$, then
\begin{equation}
\begin{aligned}
f_\le(T) &= \sum_{Y\subseteq T}f_=(Y), \\
f_=(T) &= \sum_{Y\subseteq T} (-1)^{\#(T-Y)} f_\le(Y).
\end{aligned}\label{E:8}
\end{equation}
A common special case of the Principle of Inclusion-Exclusion occurs when the function $f_=$ satisfies $f_=(T) = f_=(T')$ whenever $\#T = \#T'$. Thus also $f_\ge(T)$ depends only on $\#T$, and we set $a(n-i) = f_=(T)$ and $b(n-i) = f_\ge(T)$ whenever $\#T= i$. (Caveat. In many problems the set $A$ of objects and $S$ of properties will depend on a parameter $p$, and the functions $a(i)$ and $b(i)$ may depend on $p$. Thus, for example, $a(0)$ and $b(0)$ are the number of objects having all the properties, and this number may certainly depend on $p$. Proposition 2.2.2 is devoted to the situation when $a(i)$ and $b(i)$ are independent of $p$.) We thus obtain from equation \eqref{E:f_\ge(T)} and \eqref{E:4} the equivalence of the formulas
\begin{align}
b(m) &= \sum_{i= 0}^m \binom{m}{i} a(i), \quad 0\le m\le n, \label{E:9} \\
a(m) &= \sum_{i=0}^m \binom{m}{i} (-1)^{m-i} b(i), \quad 0\le m \le n. \label{E:10}
\end{align}
In other words, the inverse of the $(n+1)\times(n+1)$ matrix whose $(i,j)$-entry $(0\le i, j\le n)$ is $\binom{j}{i}$ has $(i,j)$-entry $(-1)^{j-i}\binom{j}{i}$. For instance,
\[
\begin{bmatrix}
1 & 1 & 1 & 1\\
0 & 1 & 2 & 3\\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 1
\end{bmatrix}^{-1} = \begin{bmatrix}
1 & -1 & 1 & -1 \\
0 & 1 & -2 & 3 \\
0 & 0 & 1 & -3 \\
0 & 0 & 0 & 1
\end{bmatrix} .
\]
Of course, we may let $n$ approach $\infty$ so that \eqref{E:9} and \eqref{E:10} are equivalent for $n = \infty$.
Note that in language of the calculus of finite differences, \eqref{E:10} can be rewritten as
\[
a(m) = \Delta^m b(0), \quad 0 \le m \le n.
\]
抄书 Richard P. Stanley Enumerative Combinatorics Chapter 2 Sieve Methods的更多相关文章
- Chapter 7:Statistical-Model-Based Methods
作者:桂. 时间:2017-05-25 10:14:21 主要是<Speech enhancement: theory and practice>的读书笔记,全部内容可以点击这里. 书中 ...
- 卡特兰数 Catalan数 ( ACM 数论 组合 )
卡特兰数 Catalan数 ( ACM 数论 组合 ) Posted on 2010-08-07 21:51 MiYu 阅读(13170) 评论(1) 编辑 收藏 引用 所属分类: ACM ( 数论 ...
- 卡特兰数(Catalan)简介
Catalan序列是一个整数序列,其通项公式是 h(n)=C(2n,n)/(n+1) (n=0,1,2,...) 其前几项为 : 1, 1, 2, 5, 14, 42, 132, 429, 1430, ...
- 【集训笔记】【大数模板】特殊的数 【Catalan数】【HDOJ1133【HDOJ1134【HDOJ1130
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3324 http://blog.csdn.net/xymscau/artic ...
- Awesome Reinforcement Learning
Awesome Reinforcement Learning A curated list of resources dedicated to reinforcement learning. We h ...
- mit课程ocw-mathematics
https://ocw.mit.edu/courses/find-by-topic/#cat=mathematics Course # Course Title Level 1.010 Uncerta ...
- Introduction to Machine Learning
Chapter 1 Introduction 1.1 What Is Machine Learning? To solve a problem on a computer, we need an al ...
- ESL翻译:Linear Methods for Regression
chapter 3: Linear Methods for Regression 第3章:回归的线性方法 3.1 Introduction A linear regression model assu ...
- 游戏人工智能 读书笔记 (四) AI算法简介——Ad-Hoc 行为编程
本文内容包含以下章节: Chapter 2 AI Methods Chapter 2.1 General Notes 本书英文版: Artificial Intelligence and Games ...
随机推荐
- 【HHHOJ】NOIP2018 模拟赛(二十五) 解题报告
点此进入比赛 得分: \(100+100+20=220\)(\(T1\)打了两个小时,以至于\(T3\)没时间打了,无奈交暴力) 排名: \(Rank\ 8\) \(Rating\):\(+19\) ...
- 更换PostgreSql的data文件夹并重新服务器(此方法同样适用于系统崩溃后,找回数据的操作)
*如果是系统崩溃,需要找回数据,PostgreSQL安装目录的data文件夹要存在 1.备份PostgreSQL安装目录到其他目录下 2.停止Postgres服务,可以在运行中输入services.m ...
- java算法面试题:从类似如下的文本文件中读取出所有的姓名,并打印出重复的姓名和重复的次数,并按重复次数排序 ;读取docx 读取doc 使用poi 相关jar包提集提供下载
从类似如下的文本文件中读取出所有的姓名,并打印出重复的姓名和重复的次数,并按重复次数排序 1,张三,28 2,李四,35 3,张三,28 4,王五,35 5,张三,28 6,李四,35 7,赵六,28 ...
- abs的个人博客 http://abs001.top/blog
abs的个人博客 abs的个人博客 abs的个人博客 abs的个人博客 abs的个人博客 abs的个人博客 abs的个人博客 abs的个人博客 abs的个人博客 abs的个人博客 abs的个人博客 a ...
- Mysql数据库的权限、索引基本操作
数据库的关闭方法: .优雅的关闭数据库的方法: mysqladmin -uroot -p123456 shutdown .脚本关闭: /etc/init.d/mysqld stop .使用kill信号 ...
- ZendFramework-2.4 源代码 - 关于MVC - Model层类图
- PHP消息队列学习
在我们平常网站设计时,会遇到“给用户群发短信”,“商城订单系统大批量订单处理”,“商城秒杀活动”等需求,这些功能,都有一个共同的特点:就是在面对高迸发的同时,必须要保证系统处理数据的有效性.那么如何处 ...
- A Bug's Life(削弱版食物链)
Description Background Professor Hopper is researching the sexual behavior of a rare species of bug ...
- 一个batch的数据如何做反向传播
一个batch的数据如何做反向传播 对于一个batch内部的数据,更新权重我们是这样做的: 假如我们有三个数据,第一个数据我们更新一次参数,不过这个更新只是在我们脑子里,实际的参数没有变化,然后使用原 ...
- Java堆内存又溢出了!教你一招必杀技
JAVA堆内存管理是影响性能主要因素之一.堆内存溢出是JAVA项目非常常见的故障,在解决该问题之前,必须先了解下JAVA堆内存是怎么工作的. 先看下JAVA堆内存是如何划分的,如图: JVM内存划分为 ...