【Luogu】P3155叶子的染色(树形DP)
树形DP水题qwq。
设f[i][j]是以i为根的子树,染成j色,且满足内部需求的最少染色节点数。
设to是x的子节点,那么状态转移方程如此设计:
1、f[i][0]
这个状态表示i不染色,那显然很好办,对于每个to从f[to][1],f[to][2]和f[to][0]里选一个最小的即可。
转移方程$f[x][0]=\sum\limits_{to}min(f[to][1],f[to][2],f[to][0])$
2、f[i][1]
此时i染成黑色。那么对于每个to我们发现,既可以让它继续染白,也可以把本来染成黑色的to改为无色,让染成黑色的i来发挥to的作用。
于是$f[x][1]=\sum\limits_{to}min(f[to][1]-1,f[to][2])$
f[i][2]类似,不再赘述。
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cctype>
#include<cstring>
#define maxn 50020
using namespace std; inline long long read(){
long long num=,f=;
char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') f=-;
ch=getchar();
}
while(isdigit(ch)){
num=num*+ch-'';
ch=getchar();
}
return num*f;
} int f[maxn][];
int q[maxn]; struct Edge{
int next,to;
}edge[maxn*];
int head[maxn],num;
inline void add(int from,int to){
edge[++num]=(Edge){head[from],to};
head[from]=num;
} int root;
int m,n;
void dfs(int x,int fa){
if(x<=n){
f[x][q[x]+]=;
f[x][(q[x]^)+]=f[x][]=;
return;
}
int whi=,bla=;
for(int i=head[x];i;i=edge[i].next){
int to=edge[i].to;
if(to==fa) continue;
dfs(to,x);
f[x][]+=min(f[to][],min(f[to][],f[to][]));
whi+=min(f[to][]-,f[to][]);
bla+=min(f[to][]-,f[to][]);
}
f[x][]=whi+;
f[x][]=bla+;
return;
} int main(){
m=read(),n=read();
for(int i=;i<=n;++i) q[i]=read();
for(int i=;i<m;++i){
int from=read(),to=read();
add(from,to);
add(to,from);
}
root=n+;
dfs(root,root);
printf("%d",min(f[root][],min(f[root][],f[root][])));
return ;
} /*
10 5
1 0 1 1 0
1 6
6 2
6 3
7 6
7 4
7 10
10 9
9 8
8 5
*/
【Luogu】P3155叶子的染色(树形DP)的更多相关文章
- 【bzoj1304】[CQOI2009]叶子的染色 树形dp
题目描述 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方案应该保证根结点到每个叶子的简单路径上都至少包含一个有色结点( ...
- BZOJ1304: [CQOI2009]叶子的染色 树形dp
Description 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方案应该保证根结点到每个叶子的简单路径上都至少包含 ...
- BZOJ 1304: [CQOI2009]叶子的染色 树形DP + 结论
Code: #include<bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin) # ...
- 洛谷 P3177 [HAOI2015]树上染色 树形DP
洛谷 P3177 [HAOI2015]树上染色 树形DP 题目描述 有一棵点数为 \(n\) 的树,树边有边权.给你一个在 \(0 \sim n\)之内的正整数 \(k\) ,你要在这棵树中选择 \( ...
- 【BZOJ4033】[HAOI2015]树上染色 树形DP
[BZOJ4033][HAOI2015]树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染 ...
- 【BZOJ4033】【HAOI2015】树上染色 树形DP
题目描述 给你一棵\(n\)个点的树,你要把其中\(k\)个点染成黑色,剩下\(n-k\)个点染成白色.要求黑点两两之间的距离加上白点两两之间距离的和最大.问你最大的和是多少. \(n\leq 200 ...
- 【Luogu】P3174毛毛虫(树形DP)
题目链接 树形DP水题,设f[x][0]是以x为根的子树,内部只有半条链(就是链的两个端点一个在子树里,一个不在子树里)的最大值,f[x][1]是以x为根的子树,内部有一条完整的链(选两个内部的子树作 ...
- bzoj4033 [HAOI2015]树上染色——树形DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4033 树形DP,状态中加入 x 与父亲之间的边的贡献: 边权竟然是long long... ...
- Luogu P1273 有限电视网【树形Dp/树形背包】
题目描述 某收费有线电视网计划转播一场重要的足球比赛.他们的转播网和用户终端构成一棵树状结构,这棵树的根结点位于足球比赛的现场,树叶为各个用户终端,其他中转站为该树的内部节点. 从转播站到转播站以及从 ...
随机推荐
- Codevs 1860 最大数
题目描述 Description 设有n个正整数(n≤20),将它们联接成一排,组成一个最大的多位整数. 输入描述 Input Description 第一行一个正整数n. 第二行n个正整数,空格隔开 ...
- Netweaver和CloudFoundry是如何运行Web应用的?
Netweaver 在Jerry的微信公众号文章SAP Fiori应用的三种部署方式里提到SAP Fiori应用以BSP应用的方式部署在ABAP Front-End Server上.那么这些BSP应用 ...
- [神经网络]一步一步使用Mobile-Net完成视觉识别(一)
1.环境配置 2.数据集获取 3.训练集获取 4.训练 5.调用测试训练结果 6.代码讲解 本文是第一篇,环境配置篇. 先打开tensorflow object detection api 看看需要什 ...
- springboot 测试
本次测试使用的是springboot 中的测试 1.(对service 的测试)下面的测试.将会启动容器进行测试 @RunWith(SpringRunner.class) @SpringBootTes ...
- c++文件偏移
#include <iostream> #include <fstream> #include <cassert> using namespace std; int ...
- ovs的学习
本来编辑好了的, 结果忘了保存, 坑爹,直接把人家的网址贴上来吧 http://blog.chinaunix.net/uid-20737871-id-4333314.html 昨天遇到一个问题(虚拟机 ...
- SSH框架使用poi插件实现Excel的导入导出功能
采用POI生成excel结构 直接贴出代码 excel表格导出功能 action代码: struts.xml配置: 前台jsp代码:
- localStorage对象
localStorage对象存储的数据没有时间限制,比如:它可以存储到第二天,第三周,半年,或二三年,只要您的电脑没有重新安装系统或更换硬盘,数据仍然会被保留着. 实例: <!DOCTYPE h ...
- C++ 学习笔记(二) const的加强
const 含义为只读.如果在程序中显式改变const变量那么编译会报错. C语言的const: 在C语言中const 变量是放在内存中,如果使用指针可以间接改变const变量.所以在C语言中cons ...
- FTP服务-实现vsftpd虚拟用户
前几篇介绍了基础,这篇将具体实现几个案例 实现基于文件验证的vsftpd虚拟用户,每个用户独立一个文件夹 1.创建用户数据库文件 vim /etc/vsftpd/vusers.txt qq cento ...