poj1734Sightseeing trip——无向图求最小环
题目:http://poj.org/problem?id=1734
无向图求最小环,用floyd;
在每个k点更新f[i][j]之前,以k点作为直接连到i,j组成一个环的点,这样找一下最小环;
注意必须存直接相连的边,在找环时k点连到i,j的值不能是最短路。
调了一个小时发现把z打成y了......
代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int n,m,f[][],pre[][],ans,path[],inf=1e9,top;
int sid[][];//真的有必要存直接相连的边
int main()
{
scanf("%d%d",&n,&m);
memset(f,-,sizeof f);
memset(sid,-,sizeof sid);
ans=inf;
for(int i=;i<=m;i++)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
if(f[x][y]==-)//
{
f[x][y]=f[y][x]=z;
pre[x][y]=x;pre[y][x]=y;
sid[x][y]=z;sid[y][x]=z;
}
else
f[x][y]=f[y][x]=sid[x][y]=sid[y][x]=min(f[x][y],z);
}
for(int k=;k<=n;k++)
{
for(int i=;i<k;i++)//找环
for(int j=i+;j<k;j++)
{
// if(k==5)printf("i=%d j=%d ans=%d %d\n",i,j,ans,f[i][j]+sid[i][k]+sid[k][j]);
if(f[i][j]!=-&&sid[i][k]!=-&&sid[k][j]!=-&&ans>f[i][j]+sid[i][k]+sid[k][j])
{
ans=f[i][j]+sid[i][k]+sid[k][j];
// printf("sid[%d][%d]=%d\n",k,j,sid[k][j]);
// printf("ans=%d\n",ans);
// printf("!f[%d][%d]=%d f[%d][%d]=%d\n",i,k,f[i][k],k,j,f[k][j]);
top=;
int t=j;
while(t!=i)
{
path[++top]=t;
t=pre[i][t];
}
path[++top]=i;
path[++top]=k;//前提为k为单出一点
}
}
for(int i=;i<=n;i++)//
for(int j=;j<=n;j++)//
if(f[i][k]!=-&&f[k][j]!=-&&(f[i][j]>f[i][k]+f[k][j]||f[i][j]==-))//
{
// printf("f[%d][%d]=%d f[%d][%d]=%d\n",i,k,f[i][k],k,j,f[k][j]);
f[i][j]=f[i][k]+f[k][j];
pre[i][j]=pre[k][j];
} }
if(ans==inf)printf("No solution.");
else
{
for(int i=;i<=top;i++)
printf("%d ",path[i]);
}
return ;
}
poj1734Sightseeing trip——无向图求最小环的更多相关文章
- B. Shortest Cycle 无向图求最小环
题意: 给定 n 个点,每个点有一个权值a[i],如果a[u]&a[v] != 0,那么就可以在(u,v)之间连一条边,求最后图的最小环(环由几个点构成) 题解:逻辑运算 & 是二进制 ...
- #10072. 「一本通 3.2 例 1」Sightseeing Trip(floyd求最小环+路径)
https://loj.ac/problem/10072 针对无向图 因为Floyd是按照结点的顺序更新最短路的,所以我们在更新最短路之前先找到一个连接点k,当前的点k肯定不存在于已存在的最短路f[i ...
- POJ1734无向图求最小环
题目:http://poj.org/problem?id=1734 方法有点像floyd.若与k直接相连的 i 和 j 在不经过k的情况下已经连通,则有环. 注意区分直接连接和间接连接. * 路径记录 ...
- 【POJ1734】Sightseeing Trip 无向图最小环
题目大意:给定一个 N 个顶点的无向图,边有边权,如果存在,求出该无向图的最小环,即:边权和最小的环,并输出路径. 题解:由于无向图,且节点数较少,考虑 Floyd 算法,在最外层刚开始遍历到第 K ...
- POJ 1734 Sightseeing trip(无向图最小环+输出路径)
题目链接 #include <cstdio> #include <string> #include <cstring> #include <queue> ...
- POJ1734 Sightseeing trip (Floyd求最小环)
学习了一下用Floyd求最小环,思路还是比较清晰的. 1 #include<iostream> 2 #include<cstdio> 3 #include<cstring ...
- FLOYD 求最小环
首先 先介绍一下 FLOYD算法的基本思想 设d[i,j,k]是在只允许经过结点1…k的情况下i到j的最短路长度则它有两种情况(想一想,为什么):最短路经过点k,d[i,j,k]=d[i,k,k- ...
- hdu 1599 find the mincost route(无向图的最小环)
find the mincost route Time Limit: 1000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/O ...
- 2021.11.03 P6175 无向图的最小环问题
2021.11.03 P6175 无向图的最小环问题 P6175 无向图的最小环问题 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 题意: 给定一张无向图,求图中一个至少包含 33 ...
随机推荐
- SpringBoot启动流程分析(一):SpringApplication类初始化过程
SpringBoot系列文章简介 SpringBoot源码阅读辅助篇: Spring IoC容器与应用上下文的设计与实现 SpringBoot启动流程源码分析: SpringBoot启动流程分析(一) ...
- 浏览器前缀-----[译]Autoprefixer:一个以最好的方式处理浏览器前缀的后处理程序
Autoprefixer解析CSS文件并且添加浏览器前缀到CSS规则里,使用Can I Use的数据来决定哪些前缀是需要的. 所有你需要做的就是把它添加到你的资源构建工具(例如 Grunt)并且可 ...
- PLSQL怎样导出oracle表结构
tools->export tables 是导出表结构还有数据 tools->export user objects是导出表结构 可以用tools->export tables ...
- 使用jquery改动表单的提交地址
基本思路: 通过使用jquery选择器得到相应表单的jquery对象,然后使用attr方法改动相应的action 演示样例程序一: 默认情况下,该表单会提交到page_one.html 点击butto ...
- 嵌入式驱动开发之---Linux ALSA音频驱动(一)
本文的部分内容参考来自DroidPhone的博客(http://blog.csdn.net/droidphone/article/details/6271122),关于ALSA写得很不错的文章,只是少 ...
- android -volley-请求数据
private List<gson.DataBean>arrGson;//请求的数据 //请求数据的方法 public void initData() { RequestQueue mQu ...
- Java 基础系列之volatile变量(一)
一.锁 两种特性:互斥性(mutual exclusion).可见性(visibility).原子性(atomic) 互斥性就是一次只有一个线程可以访问该共享数据,可见性就是释放锁之前,对共享数据的修 ...
- VS2012,VS2013启用SQLite的Data Provider界面显示
VS2012,VS2013启用SQLite的Data Provider界面显示 VS 2012默认是不带的SQLite的Data Provider,所以无法直接在VS 2012里管理SQLite的数据 ...
- 使用IntelliJ IDEA 15和Maven创建Java Web项目(转)
1. Maven简介 相对于传统的项目,Maven 下管理和构建的项目真的非常好用和简单,所以这里也强调下,尽量使用此类工具进行项目构建, 它可以管理项目的整个生命周期. 可以通过其命令做所有相关的工 ...
- 九度OJ 1156:谁是你的潜在朋友 (并查集)
时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:5802 解决:2593 题目描述: "臭味相投"--这是我们描述朋友时喜欢用的词汇.两个人是朋友通常意味着他们存在着许多 ...