UVA11149 Power of Matrix —— 矩阵倍增、矩阵快速幂
题目链接:https://vjudge.net/problem/UVA-11149
题意:
给出矩阵A,求出A^1 + A^2 …… + A^k 。
题解:
1.可知:A^1 + A^2 …… + A^k = (1+A^k/2)*(A^1 + A^2 …… + A^k/2)+ (k%2?A^k:0)。
2.根据上述式子,可二分对其求解。
代码如下:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
//const int MOD = 1e9+7;
const int MAXN = 1e6+; const int MOD = ;
int Size;
struct MA
{
LL mat[][];
void init()
{
for(int i = ; i<Size; i++)
for(int j = ; j<Size; j++)
mat[i][j] = (i==j);
}
}; MA mul(MA x, MA y)
{
MA ret;
memset(ret.mat, , sizeof(ret.mat));
for(int i = ; i<Size; i++)
for(int j = ; j<Size; j++)
for(int k = ; k<Size; k++)
ret.mat[i][j] += 1LL*x.mat[i][k]*y.mat[k][j]%MOD, ret.mat[i][j] %= MOD;;
return ret;
} MA add(MA x, MA y)
{
MA ret;
memset(ret.mat, , sizeof(ret.mat));
for(int i = ; i<Size; i++)
for(int j = ; j<Size; j++)
ret.mat[i][j] = x.mat[i][j]+y.mat[i][j], ret.mat[i][j] %= MOD;
return ret;
} MA qpow(MA x, LL y)
{
MA s;
s.init();
while(y)
{
if(y&) s = mul(s, x);
x = mul(x, x);
y >>= ;
}
return s;
} MA solve(MA x, int k)
{
if(k==) return x;
MA s;
s.init();
s = mul(add(s, qpow(x, k/)), solve(x, k/));
if(k%) s = add(s, qpow(x, k));
return s;
} int main()
{
int n, k;
while(scanf("%d%d", &n,&k)&&n)
{
MA s;
Size = n;
memset(s.mat, , sizeof(s.mat));
for(int i = ; i<n; i++)
for(int j = ; j<n; j++)
{
scanf("%lld", &s.mat[i][j]);
s.mat[i][j] %= MOD;
} s = solve(s, k);
for(int i = ; i<n; i++)
{
for(int j = ; j<n; j++)
printf("%lld%s", s.mat[i][j], j==n-?"\n":" ");
}
printf("\n");
}
}
UVA11149 Power of Matrix —— 矩阵倍增、矩阵快速幂的更多相关文章
- Luogu 3390 【模板】矩阵快速幂 (矩阵乘法,快速幂)
Luogu 3390 [模板]矩阵快速幂 (矩阵乘法,快速幂) Description 给定n*n的矩阵A,求A^k Input 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵 ...
- Luogu T7152 细胞(递推,矩阵乘法,快速幂)
Luogu T7152 细胞(递推,矩阵乘法,快速幂) Description 小 X 在上完生物课后对细胞的分裂产生了浓厚的兴趣.于是他决定做实验并 观察细胞分裂的规律. 他选取了一种特别的细胞,每 ...
- UVa 11149 Power of Matrix(倍增法、矩阵快速幂)
题目链接: 传送门 Power of Matrix Time Limit: 3000MS Description 给一个n阶方阵,求A1+A2+A3+......Ak. 思路 A1+A2+. ...
- poj3613:Cow Relays(倍增优化+矩阵乘法floyd+快速幂)
Cow Relays Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7825 Accepted: 3068 Descri ...
- HDU4965 Fast Matrix Calculation —— 矩阵乘法、快速幂
题目链接:https://vjudge.net/problem/HDU-4965 Fast Matrix Calculation Time Limit: 2000/1000 MS (Java/Othe ...
- Power of Matrix 等比数列求和 矩阵版!
#include<iostream> #include<cstdio> #include<cmath> #include<cstring> #inclu ...
- HDU1575Tr A(矩阵相乘与快速幂)
Tr A hdu1575 就是一个快速幂的应用: 只要知道怎么求矩阵相乘!!(比赛就知道会超时,就是没想到快速幂!!!) #include<iostream> #include<st ...
- bzoj 3240: [Noi2013]矩阵游戏 矩阵乘法+十进制快速幂+常数优化
3240: [Noi2013]矩阵游戏 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 613 Solved: 256[Submit][Status] ...
- bzoj 3240 矩阵乘法+十进制快速幂
首先,构造出从f[][i]->f[][i+1]的转移矩阵a,和从f[i][m]->f[i+1][1]的转移矩阵b, 那么从f[1][1]转移到f[n][m]就是init*(a^(m-1)* ...
随机推荐
- LibieOJ 6170 字母树 (Trie)
题目链接 字母树 (以每个点为根遍历,插入到trie中,统计答案即可)——SamZhang #include <bits/stdc++.h> using namespace std; #d ...
- codevs贪吃的九头龙
传说中的九头龙是一种特别贪吃的动物.虽然名字叫“九头龙”,但这只是说它出生的时候有九个头,而在成长的过程中,它有时会长出很多的新头,头的总数会远大于九,当然也会有旧头因衰老而自己脱落.有一天,有M 个 ...
- (入门SpringBoot)SpringBoot配置全局异常(五)
Spring的全局异常,用于捕获程序员没有捕获的异常.具体请看下面代码: 1.ControllerAdvice拦截异常,统一处理.通过Spring的AOP来管理. @ControllerAdvicep ...
- java poi excel 生成表格的工具封装
效果如下: 代码如下: import java.io.File; import java.io.FileOutputStream; import java.io.IOException; import ...
- Leetcode总结之Union Find
package UnionFind; import java.util.ArrayList; import java.util.LinkedList; import java.util.List; p ...
- Android API Guides---Services
服务 在该文献 基础 声明在清单服务 创建一个启动的服务 扩展IntentService类 扩展服务类 启动服务 停止服务 创建绑定服务 将通知发送给用户 执行在前台服务 管理服务生命周期 实施生命周 ...
- C# Window编程随记——ClickOnce程序部署
关于ClickOnce我们要说的主要有一下两点: 什么是ClickOnce? ClickOnce的使用 一.什么是ClickOnce(来自百度) ClickOnce 是一种部署技术,使 ...
- Oracle数据库有用函数
有用函数 DECODE 语法例如以下: DECODE(value, if1, then1, if2,then2,if3,then3, . . . else ) Value 代表某个表的不论什么类型的 ...
- LINUXFOUNDATION EVENTS
http://events.linuxfoundation.org/ #lflks This invitation-only event focuses on development and inno ...
- 数据结构基础之memset---有memset 抛出的int 和 char 之间的转换和字节对齐
今天晚上,在做滤波算法时,里面用到很多float 和int 以及char 之间的类型强制转换,后面滤波完发现图片有些区域块,有过度曝光的白光,我就跟踪,以为是char 字符数字数据溢出问题,加了0-2 ...