题目描述

在这个问题中,给定一个值S和一棵树。在树的每个节点有一个正整数,问有多少条路径的节点总和达到S。路径中节点的深度必须是升序的。假设节点1是根节点,根的深度是0,它的儿子节点的深度为1。路径不必一定从根节点开始。

输入输出格式

输入格式:

第一行是两个整数N和S,其中N是树的节点数。 第二行是N个正整数,第i个整数表示节点i的正整数。 接下来的N-1行每行是2个整数x和y,表示y是x的儿子。

输出格式:

输出路径节点总和为S的路径数量。

输入输出样例

输入样例#1:

3 3
1 2 3
1 2
1 3
输出样例#1:

2

说明

对于100%数据,N<=100000,所有权值以及S都不超过1000。

题目大意:求树上连续一段深度递增的路径的点权和为s的条数

题解:dfs(i)以i为起点的路径有多少条

错因:理解错了 不能用记忆化搜索

数据水暴力可过

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#define LL long long
#define maxn 100008
using namespace std; int n,s,sumedge;
int head[maxn],w[maxn];
long long ans; struct Edge{
int x,y,nxt;
Edge(int x=,int y=,int nxt=):
x(x),y(y),nxt(nxt){}
}edge[maxn]; void add(int x,int y){
edge[++sumedge]=Edge(x,y,head[x]);
head[x]=sumedge;
} LL dfs(int x,int sum){
if(sum>s)return ;
if(sum==s)return ;
long long js=;
for(int i=head[x];i;i=edge[i].nxt){
int v=edge[i].y;
js+=dfs(v,sum+w[v]);
}
return js;
} int main(){
scanf("%d%d",&n,&s);
for(int i=;i<=n;i++)scanf("%d",&w[i]);
for(int i=;i<n;i++){
int x,y;
scanf("%d%d",&x,&y);
add(x,y);
}
for(int i=;i<=n;i++)if(w[i]==s)ans++;else ans+=dfs(i,w[i]);
cout<<ans<<endl;
return ;
}

树上前缀和

保存搜到i之前的祖先,累加权值,是否sum[i]-sum[祖先]=s,注意搜完时删掉祖先。

#include<iostream>
#include<cstdio>
#include<cstring>
#define maxn 100008
#define LL long long
using namespace std; int n,s,sumedge,cnt,js;
int head[maxn],w[maxn],dad[maxn],fa[maxn],sum[maxn];
LL ans; struct Edge{
int x,y,nxt;
Edge(int x=,int y=,int nxt=):
x(x),y(y),nxt(nxt){}
}edge[maxn]; void add(int x,int y){
edge[++sumedge]=Edge(x,y,head[x]);
head[x]=sumedge;
} void dfs(int x){
dad[++js]=x;
for(int i=head[x];i;i=edge[i].nxt){
int v=edge[i].y;
sum[v]=sum[x]+w[v];
for(int j=js;j>=;j--){//要循环到0,可能它自己的点权就是s
if(sum[v]-sum[dad[j]]==s)ans++;
if(sum[v]-sum[dad[j]]>s)break;
}
dfs(v);
}
js--;
} int main(){
scanf("%d%d",&n,&s);
for(int i=;i<=n;i++)scanf("%d",&w[i]);
for(int i=;i<n;i++){
int x,y;
scanf("%d%d",&x,&y);
fa[y]=x;
add(x,y);
}
sum[]=w[];
dfs();
cout<<ans<<endl;
return ;
}

洛谷P3252 [JLOI2012]树的更多相关文章

  1. 洛谷——P3252 [JLOI2012]树

    P3252 [JLOI2012]树 题目描述 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.假设节点1是根节点,根的深度 ...

  2. 洛谷 P3252 [JLOI2012]树

    P3252 [JLOI2012]树 题目描述 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.假设节点1是根节点,根的深度 ...

  3. 洛谷1087 FBI树 解题报告

    洛谷1087 FBI树 本题地址:http://www.luogu.org/problem/show?pid=1087 题目描述 我们可以把由“0”和“1”组成的字符串分为三类:全“0”串称为B串,全 ...

  4. 洛谷P3018 [USACO11MAR]树装饰Tree Decoration

    洛谷P3018 [USACO11MAR]树装饰Tree Decoration树形DP 因为要求最小,我们就贪心地用每个子树中的最小cost来支付就行了 #include <bits/stdc++ ...

  5. NOIP2017提高组Day2T3 列队 洛谷P3960 线段树

    原文链接https://www.cnblogs.com/zhouzhendong/p/9265380.html 题目传送门 - 洛谷P3960 题目传送门 - LOJ#2319 题目传送门 - Vij ...

  6. 洛谷P3703 [SDOI2017]树点涂色(LCT,dfn序,线段树,倍增LCA)

    洛谷题目传送门 闲话 这是所有LCT题目中的一个异类. 之所以认为是LCT题目,是因为本题思路的瓶颈就在于如何去维护同颜色的点的集合. 只不过做着做着,感觉后来的思路(dfn序,线段树,LCA)似乎要 ...

  7. 洛谷P3372线段树1

    难以平复鸡冻的心情,虽然可能在大佬眼里这是水题,但对蒟蒻的我来说这是个巨大的突破(谢谢我最亲爱的lp陪我写完,给我力量).网上关于线段树的题解都很玄学,包括李煜东的<算法竞赛进阶指南>中的 ...

  8. 洛谷P3830 随机树(SHOI2012)概率期望DP

    题意:中文题,按照题目要求的二叉树生成方式,问(1)叶平均深度 (2)树平均深度 解法:这道题看完题之后完全没头绪,无奈看题解果然不是我能想到的qwq.题解参考https://blog.csdn.ne ...

  9. 洛谷 P3714 - [BJOI2017]树的难题(点分治)

    洛谷题面传送门 咦?鸽子 tzc 竟然来补题解了?incredible( 首先看到这样类似于路径统计的问题我们可以非常自然地想到点分治.每次我们找出每个连通块的重心 \(x\) 然后以 \(x\) 为 ...

随机推荐

  1. ios面试基础

    1.#import和#include的差别 @class? @class一般用于头文件里须要声明该类的某个实例变量的时候用到,在m文 件中还是须要使用#import 而#import比起#includ ...

  2. wifi认证Portal开发系列(三):portal协议

    中国移动WLAN业务PORTAL协议规范介绍 一.用户上线认证流程 上线流程完成用户账号的认证,并把认证结果通知Portal Server,Portal server将会通知WLAN用户并且显示相应的 ...

  3. ReentrentLock重入锁

    ReentrentLock lock=new ReentrentLock(); lock.lock(); //锁的代码 finally{ lock.unlock(); } ReentrentLock ...

  4. 史上最浅显易懂的Git教程1

    工作区(Working Directory)就是你在电脑里能看到的目录, 工作区有一个隐藏目录.git,这个不算工作区,而是Git的版本库. Git的版本库里存了很多东西,其中最重要的就是称为stag ...

  5. 解决Oracle用户被锁定的方法

    解决Oracle用户被锁定的方法 1,cmd控制台: 使用sqlplus 命令:sqlplus sys/密码@ip/orcl as sysdba; 2,先设置具体时间格式,以便查看具体时间 SQL&g ...

  6. Log4j2升级jar包冲突问题

    升级Log4j2后日志提示jar包冲突: SLF4J: Class path contains multiple SLF4J bindings.SLF4J: Found binding in [jar ...

  7. Fragment 生命周期:

    Fragment每个生命周期方法的意义.作用(注意红色的不是生命周期方法):setUserVisibleHint():设置Fragment可见或者不可见时会调用此方法.在该方法里面可以通过调用getU ...

  8. Android 自定义View跑马灯效果(一)

    今天通过书籍重新复习了一遍自定义VIew,为了加强自己的学习,我把它写在博客里面,有兴趣的可以看一下,相互学习共同进步: 通过自定义一个跑马灯效果,来诠释一下简单的效果: 一.创建一个类继承View, ...

  9. go test 下篇

    前言 go test 上篇 给大家介绍了golang自带的测试框架,包括单元测试和性能测试.但是在实际生产中测试经常会遇到一些网络或者依赖的第三方系统接口,运行测试用例的时候希望忽略这些接口的实际依赖 ...

  10. 如何理解API,API 是如何工作的

    大神博客:https://blog.csdn.net/cumtdeyurenjie/article/details/80211896