题目描述

在这个问题中,给定一个值S和一棵树。在树的每个节点有一个正整数,问有多少条路径的节点总和达到S。路径中节点的深度必须是升序的。假设节点1是根节点,根的深度是0,它的儿子节点的深度为1。路径不必一定从根节点开始。

输入输出格式

输入格式:

第一行是两个整数N和S,其中N是树的节点数。 第二行是N个正整数,第i个整数表示节点i的正整数。 接下来的N-1行每行是2个整数x和y,表示y是x的儿子。

输出格式:

输出路径节点总和为S的路径数量。

输入输出样例

输入样例#1:

3 3
1 2 3
1 2
1 3
输出样例#1:

2

说明

对于100%数据,N<=100000,所有权值以及S都不超过1000。

题目大意:求树上连续一段深度递增的路径的点权和为s的条数

题解:dfs(i)以i为起点的路径有多少条

错因:理解错了 不能用记忆化搜索

数据水暴力可过

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#define LL long long
#define maxn 100008
using namespace std; int n,s,sumedge;
int head[maxn],w[maxn];
long long ans; struct Edge{
int x,y,nxt;
Edge(int x=,int y=,int nxt=):
x(x),y(y),nxt(nxt){}
}edge[maxn]; void add(int x,int y){
edge[++sumedge]=Edge(x,y,head[x]);
head[x]=sumedge;
} LL dfs(int x,int sum){
if(sum>s)return ;
if(sum==s)return ;
long long js=;
for(int i=head[x];i;i=edge[i].nxt){
int v=edge[i].y;
js+=dfs(v,sum+w[v]);
}
return js;
} int main(){
scanf("%d%d",&n,&s);
for(int i=;i<=n;i++)scanf("%d",&w[i]);
for(int i=;i<n;i++){
int x,y;
scanf("%d%d",&x,&y);
add(x,y);
}
for(int i=;i<=n;i++)if(w[i]==s)ans++;else ans+=dfs(i,w[i]);
cout<<ans<<endl;
return ;
}

树上前缀和

保存搜到i之前的祖先,累加权值,是否sum[i]-sum[祖先]=s,注意搜完时删掉祖先。

#include<iostream>
#include<cstdio>
#include<cstring>
#define maxn 100008
#define LL long long
using namespace std; int n,s,sumedge,cnt,js;
int head[maxn],w[maxn],dad[maxn],fa[maxn],sum[maxn];
LL ans; struct Edge{
int x,y,nxt;
Edge(int x=,int y=,int nxt=):
x(x),y(y),nxt(nxt){}
}edge[maxn]; void add(int x,int y){
edge[++sumedge]=Edge(x,y,head[x]);
head[x]=sumedge;
} void dfs(int x){
dad[++js]=x;
for(int i=head[x];i;i=edge[i].nxt){
int v=edge[i].y;
sum[v]=sum[x]+w[v];
for(int j=js;j>=;j--){//要循环到0,可能它自己的点权就是s
if(sum[v]-sum[dad[j]]==s)ans++;
if(sum[v]-sum[dad[j]]>s)break;
}
dfs(v);
}
js--;
} int main(){
scanf("%d%d",&n,&s);
for(int i=;i<=n;i++)scanf("%d",&w[i]);
for(int i=;i<n;i++){
int x,y;
scanf("%d%d",&x,&y);
fa[y]=x;
add(x,y);
}
sum[]=w[];
dfs();
cout<<ans<<endl;
return ;
}

洛谷P3252 [JLOI2012]树的更多相关文章

  1. 洛谷——P3252 [JLOI2012]树

    P3252 [JLOI2012]树 题目描述 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.假设节点1是根节点,根的深度 ...

  2. 洛谷 P3252 [JLOI2012]树

    P3252 [JLOI2012]树 题目描述 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.假设节点1是根节点,根的深度 ...

  3. 洛谷1087 FBI树 解题报告

    洛谷1087 FBI树 本题地址:http://www.luogu.org/problem/show?pid=1087 题目描述 我们可以把由“0”和“1”组成的字符串分为三类:全“0”串称为B串,全 ...

  4. 洛谷P3018 [USACO11MAR]树装饰Tree Decoration

    洛谷P3018 [USACO11MAR]树装饰Tree Decoration树形DP 因为要求最小,我们就贪心地用每个子树中的最小cost来支付就行了 #include <bits/stdc++ ...

  5. NOIP2017提高组Day2T3 列队 洛谷P3960 线段树

    原文链接https://www.cnblogs.com/zhouzhendong/p/9265380.html 题目传送门 - 洛谷P3960 题目传送门 - LOJ#2319 题目传送门 - Vij ...

  6. 洛谷P3703 [SDOI2017]树点涂色(LCT,dfn序,线段树,倍增LCA)

    洛谷题目传送门 闲话 这是所有LCT题目中的一个异类. 之所以认为是LCT题目,是因为本题思路的瓶颈就在于如何去维护同颜色的点的集合. 只不过做着做着,感觉后来的思路(dfn序,线段树,LCA)似乎要 ...

  7. 洛谷P3372线段树1

    难以平复鸡冻的心情,虽然可能在大佬眼里这是水题,但对蒟蒻的我来说这是个巨大的突破(谢谢我最亲爱的lp陪我写完,给我力量).网上关于线段树的题解都很玄学,包括李煜东的<算法竞赛进阶指南>中的 ...

  8. 洛谷P3830 随机树(SHOI2012)概率期望DP

    题意:中文题,按照题目要求的二叉树生成方式,问(1)叶平均深度 (2)树平均深度 解法:这道题看完题之后完全没头绪,无奈看题解果然不是我能想到的qwq.题解参考https://blog.csdn.ne ...

  9. 洛谷 P3714 - [BJOI2017]树的难题(点分治)

    洛谷题面传送门 咦?鸽子 tzc 竟然来补题解了?incredible( 首先看到这样类似于路径统计的问题我们可以非常自然地想到点分治.每次我们找出每个连通块的重心 \(x\) 然后以 \(x\) 为 ...

随机推荐

  1. Struts2学习九----------处理结果类型(input)

    © 版权声明:本文为博主原创文章,转载请注明出处 Struts2处理结果类型 - SUCCESS:Action正确的执行完成,返回相应的视图,success是name属性的默认值 - ERROR:表示 ...

  2. 深入浅出Attribute (一)

    正文: 什么是Attribute?Attribute是干什么使的?Attribute与Property到底有什么区别?…… 长久以来,这些问题一直困扰着并不怎么广大的C#初学者.原因大概有两个,一是A ...

  3. 根据URL发起HTTP请求,我的HTTPHelper。

     完整的demo using System; using System.Collections.Generic; using System.Linq; using System.Text; using ...

  4. visual studio 2010 c++ 打印 Hello world

    由于好奇心驱使温习下c高级简化语言语言(个人解释可能不太准确).下面用visual studio 2010 实现 HelloWord 打印 第一步:visual studio 2010 打开.文件-- ...

  5. IOS简单的渐变绘制

    本文转载至 http://www.cnblogs.com/flychen/archive/2012/09/18/2690264.html 前几个星期项目中的音乐列表左边要添加阴影,做成平滑的效果.如图 ...

  6. MongoDB在win7上的安装(精简版)

    1.下载mongdb的zip文件,解压后会发现有bin文件夹,在同层目录下建一个data目录, 2.在data目录下建一个log和db文件夹, 3.在log文件下建一个MongoDB.log 文件 4 ...

  7. 九度OJ 1172:哈夫曼树 (贪心)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:6701 解决:2954 题目描述: 哈夫曼树,第一行输入一个数n,表示叶结点的个数.需要用这些叶结点生成哈夫曼树,根据哈夫曼树的概念,这些结 ...

  8. 九度OJ 1037:Powerful Calculator(强大的计算器) (大整数运算)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:1821 解决:528 题目描述: Today, facing the rapid development of business, SJTU ...

  9. Cauchy sequence Hilbert space 希尔波特空间的柯西序列

    http://mathworld.wolfram.com/HilbertSpace.html A Hilbert space is a vector space  with an inner prod ...

  10. cookie和session的原理机制

    会话(Session)跟踪是Web程序中常用的技术,用来跟踪用户的整个会话.常用的会话跟踪技术是Cookie与Session.Cookie通过在客户端记录信息确定用户身份,Session通过在服务器端 ...