BZOJ_3529_[Sdoi2014]数表_莫比乌斯反演+树状数组
Description
Input
Output
对每组数据,输出一行一个整数,表示答案模2^31的值。
Sample Input
4 4 3
10 10 5
Sample Output
148
$\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}f(gcd(i,j))$
$\sum\limits_{d=1}^{n}f(d)\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}[gcd(i,j)=d]$
$\sum\limits_{d=1}^{n}f(d)\sum\limits_{i=1}^{n/d}\sum\limits_{j=1}^{m/d}[gcd(i,j)=1]$
$\sum\limits_{d=1}^{n}f(d)\sum\limits_{i=1}^{n/d}\sum\limits_{j=1}^{m/d}\sum\limits_{p|gcd(i,j)}\mu(p)$
$\sum\limits_{d=1}^{n}f(d)\sum\limits_{p|n}\mu(p)n/dp*m/dp$
$\sum\limits_{Q=1}^{n}n/Q*m/Q\sum\limits_{d|Q}f(d)\mu(Q/d)$
$g(n)=\sum\limits_{d|n}f(d)\mu(n/d)$
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cstdlib>
using namespace std;
#define N 100050
#define M 100000
typedef unsigned int un;
int prime[N],cnt,miu[N],ys[N],ysh[N],id[N];
un c[N],ans[N];
bool vis[N];
struct A {
int id,n,m,a;
bool operator < (const A &x) const {
return a<x.a;
}
}q[N];
void fix(int x,un v) {for(;x<=M;x+=x&(-x)) c[x]+=v;}
un inq(int x) {un re=0; for(;x;x-=x&(-x)) re+=c[x]; return re;}
inline bool cmp(const int &x,const int &y) {return ysh[x]<ysh[y];}
void init() {
int i,j; miu[1]=1;
for(id[1]=1,i=2;i<=M;i++) {
if(!vis[i]) {
prime[++cnt]=i; miu[i]=-1;
}
for(j=1;j<=cnt&&i*prime[j]<=M;j++) {
int y=i*prime[j]; vis[y]=1;
if(i%prime[j]==0) {miu[y]=0;break;}
miu[y]=-miu[i];
}
id[i]=i;
}
for(i=1;i<=M;i++) for(j=i;j<=M;j+=i) ysh[j]+=i;
sort(id+1,id+M+1,cmp);
}
void add(int x) {
int i;
for(i=x;i<=M;i+=x) {
fix(i,ysh[x]*miu[i/x]);
}
}
un solve(un n,un m) {
int i,lst; if(n>m) swap(n,m); un re=0;
for(i=1;i<=n;i=lst+1) {
lst=min(n/(n/i),m/(m/i));
re+=(n/i)*(m/i)*(inq(lst)-inq(i-1));
}
return re;
}
int main() {
init();
int Q;
scanf("%d",&Q);
int i,j=1;
for(i=1;i<=Q;i++) scanf("%d%d%d",&q[i].n,&q[i].m,&q[i].a),q[i].id=i;
sort(q+1,q+Q+1);
for(i=1;i<=Q;i++) {
while(ysh[id[j]]<=q[i].a&&j<=M) add(id[j]),j++;
ans[q[i].id]=solve(q[i].n,q[i].m);
}
for(i=1;i<=Q;i++) printf("%u\n",ans[i]&((1u<<31)-1));
}
BZOJ_3529_[Sdoi2014]数表_莫比乌斯反演+树状数组的更多相关文章
- 洛谷P3312 [SDOI2014]数表(莫比乌斯反演+树状数组)
传送门 不考虑$a$的影响 设$f(i)$为$i$的约数和 $$ans=\sum\limits_{i=1}^n\sum\limits_{j=1}^nf(gcd(i,j))$$ $$=\sum\limi ...
- 【BZOJ3529】【SDOI2014】数表 (莫比乌斯反演+树状数组)
传送门 Description 有一张$n\times m$的数表,其第$i$行第$j$列 $(1≤i≤n,1≤j≤m)$ 的数值为能同时整除$i$和$j$的所有自然数之和.现在给定$a$,计算数表中 ...
- BZOJ 3259 [Sdoi2014]数表 (莫比乌斯反演 + 树状数组)
3529: [Sdoi2014]数表 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 2321 Solved: 1187[Submit][Status ...
- 【BZOJ3529】[Sdoi2014]数表 莫比乌斯反演+树状数组
[BZOJ3529][Sdoi2014]数表 Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为能同时整除i和 ...
- BZOJ 3529 [Sdoi2014]数表 (莫比乌斯反演+树状数组+离线)
题目大意:有一张$n*m$的数表,第$i$行第$j$列的数是同时能整除$i,j$的所有数之和,求数表内所有不大于A的数之和 先是看错题了...接着看对题了发现不会做了...刚了大半个下午无果 看了Po ...
- BZOJ 3529: [Sdoi2014]数表 [莫比乌斯反演 树状数组]
3529: [Sdoi2014]数表 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1399 Solved: 694[Submit][Status] ...
- 【BZOJ3529】【莫比乌斯反演 + 树状数组】[Sdoi2014]数表
Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为 能同时整除i和j的所有自然数之和.给定a,计算数表中不大于 ...
- BZOJ 3529 [Sdoi2014]数表 ——莫比乌斯反演 树状数组
$ans=\sum_{i=1}^n\sum_{j=1}^n\sigma(gcd(i,j))$ 枚举gcd为d的所有数得到 $ans=\sum_{d<=n}\sigma(d)*g(d)$ $g(d ...
- BZOJ3529: [Sdoi2014]数表(莫比乌斯反演 树状数组)
题意 题目链接 Sol 首先不考虑\(a\)的限制 我们要求的是 \[\sum_{i = 1}^n \sum_{j = 1}^m \sigma(gcd(i, j))\] 用常规的套路可以化到这个形式 ...
随机推荐
- PHP session回收机制(转)
由于PHP的工作机制,它并没有一个daemon线程,来定时地扫描session信息并判断其是否失效.当一个有效请求发生时,PHP会根据全局变量 session.gc_probability/sessi ...
- Java方法存在于哪一区
Java运行时的数据区包括:(其中前两个是线程共享的) 1.方法区(Method Area)存储已被虚拟机加载的类信息.常量.静态变量.即编译器编译后的代码等数据 2.堆(Heap)存放对象实例,几乎 ...
- c++引用返回值
引用作为函数的返回值时,函数的返回值能够理解为函数返回了一个变量(事实上,函数返回引用时,它返回的是一个指向返回值的隐式指针),因此,值为引用的函数能够用作赋值运算符的左操作数.另外,用引用返回一个函 ...
- eolinker开源版接口管理
eolinker开源版接口管理 想找一个API接口管理的软件,为了安全性和扩展性考虑,希望是开源的,而且可以在内网独立部署.网上翻找了资料,经过一份比对之后,最终采用eolinker.过去有使用过RA ...
- 安装部署zookeeper集群
实验说明: 三台虚拟机做zookeeper集群,集群个数最好是奇数个,原理详见zookeeper 详解 安装zookeeper 请确保jdk 已安装好,否则无法启动 三台虚拟机IP分别为:192. ...
- pm2 服务崩溃 Error: bind EADDRINUSE
pm2 服务崩溃 Error: bind EADDRINUSE 发布于 1 年前 作者 zhujun24 2444 次浏览 来自 问答 Error: bind EADDRINUSE 0.0.0 ...
- PowerBuilder -- Tab控件
在tab中关闭窗口 Close(tab_1.getparent()) 调整tab中的控件的tab oder 鼠标右键tabpage_1,选择 Tab Order菜单.
- C#之stream
在C#中经常要用stream stream下面主要有 FileStream:使用文件作为后备设备. BufferedStream:使用缓冲区作为后备设备,用来增强性能的中间存储. MemoryStre ...
- python爬虫入门篇
优质爬虫入门源码:https://github.com/lining0806/PythonSpiderNotes Python Spider:https://www.cnblogs.com/wangy ...
- python 基础 4.2 高阶函数上
一.高阶函数 把函数当做参数传递的一种函数 1>map()函数 map函数是python内置的一个高阶函数,它接受一个函数f和一个list,并把list元素以此传递给函数f,然后返回一个函数 ...