sparksql  hive

https://databricks.com/blog/2014/07/01/shark-spark-sql-hive-on-spark-and-the-future-of-sql-on-spark.html

https://cwiki.apache.org/confluence/display/Hive/Home

【服务数仓,支持sql强标准】

Apache Hive

The Apache Hive™ data warehouse software facilitates reading, writing, and managing large datasets residing in distributed storage and queried using SQL syntax.

【执行引擎有Spark】

Built on top of Apache Hadoop™, Hive provides the following features:

  • Tools to enable easy access to data via SQL, thus enabling data warehousing tasks such as extract/transform/load (ETL), reporting, and data analysis.
  • A mechanism to impose structure on a variety of data formats
  • Access to files stored either directly in Apache HDFS or in other data storage systems such as Apache HBase

  • Query execution via Apache TezApache Spark, or MapReduce
  • Procedural language with HPL-SQL
  • Sub-second query retrieval via Hive LLAPApache YARN and Apache Slider.

Hive provides standard SQL functionality, including many of the later SQL:2003 and SQL:2011 features for analytics. 
Hive's SQL can also be extended with user code via user defined functions (UDFs), user defined aggregates (UDAFs), and user defined table functions (UDTFs).

There is not a single "Hive format" in which data must be stored. Hive comes with built in connectors for comma and tab-separated values (CSV/TSV) text files, Apache ParquetApache ORC, and other formats. 
Users can extend Hive with connectors for other formats. Please see File Formats and Hive SerDe in the Developer Guide for details.

Hive is not designed for online transaction processing (OLTP) workloads. It is best used for traditional data warehousing tasks. 
Hive is designed to maximize scalability (scale out with more machines added dynamically to the Hadoop cluster), performance, extensibility, fault-tolerance, and loose-coupling with its input formats.

Components of Hive include HCatalog and WebHCat.

  • HCatalog is a component of Hive. It is a table and storage management layer for Hadoop that enables users with different data processing tools — including Pig and MapReduce — to more easily read and write data on the grid.
  • WebHCat provides a service that you can use to run Hadoop MapReduce (or YARN), Pig, Hive jobs or perform Hive metadata operations using an HTTP (REST style) interface.

https://issues.apache.org/jira/browse/HIVE-7292

Spark as an open-source data analytics cluster computing framework has gained significant momentum recently. Many Hive users already have Spark installed as their computing backbone. To take advantages of Hive, they still need to have either MapReduce or Tez on their cluster. This initiative will provide user a new alternative so that those user can consolidate their backend.

Secondly, providing such an alternative further increases Hive's adoption as it exposes Spark users to a viable, feature-rich de facto standard SQL tools on Hadoop.

【在多reducer阶段,性能佳】

Finally, allowing Hive to run on Spark also has performance benefits. Hive queries, especially those involving multiple reducer stages, will run faster, thus improving user experience as Tez does.

This is an umbrella JIRA which will cover many coming subtask. Design doc will be attached here shortly, and will be on the wiki as well. Feedback from the community is greatly appreciated!

【共享Hive元数据】

Sparksql   没有元数据? 通过临时创建元数据 或者 直接用Hive的元数据?

Sparksql 取代 Hive?的更多相关文章

  1. SparkSQL读取Hive中的数据

    由于我Spark采用的是Cloudera公司的CDH,并且安装的时候是在线自动安装和部署的集群.最近在学习SparkSQL,看到SparkSQL on HIVE.下面主要是介绍一下如何通过SparkS ...

  2. SparkSQL与Hive on Spark的比较

    简要介绍了SparkSQL与Hive on Spark的区别与联系 一.关于Spark 简介 在Hadoop的整个生态系统中,Spark和MapReduce在同一个层级,即主要解决分布式计算框架的问题 ...

  3. 关于sparksql操作hive,读取本地csv文件并以parquet的形式装入hive中

    说明:spark版本:2.2.0 hive版本:1.2.1 需求: 有本地csv格式的一个文件,格式为${当天日期}visit.txt,例如20180707visit.txt,现在需要将其通过spar ...

  4. spark on yarn模式下配置spark-sql访问hive元数据

    spark on yarn模式下配置spark-sql访问hive元数据 目的:在spark on yarn模式下,执行spark-sql访问hive的元数据.并对比一下spark-sql 和hive ...

  5. sparksql 操作hive

    写在前面:hive的版本是1.2.1spark的版本是1.6.x http://spark.apache.org/docs/1.6.1/sql-programming-guide.html#hive- ...

  6. 【完美解决】Spark-SQL、Hive多 Metastore、多后端、多库

    [完美解决]Spark-SQL.Hive多 Metastore.多后端.多库 [完美解决]Spark-SQL.Hive多 Metastore.多后端.多库 SparkSQL 支持同时连接多种 Meta ...

  7. hive on spark VS SparkSQL VS hive on tez

    http://blog.csdn.net/wtq1993/article/details/52435563 http://blog.csdn.net/yeruby/article/details/51 ...

  8. Spark-SQL连接Hive

    第一步:修个Hive的配置文件hive-site.xml 添加如下属性,取消本地元数据服务: <property> <name>hive.metastore.local< ...

  9. SparkSQL与Hive on Spark

    SparkSQL与Hive on Spark的比较 简要介绍了SparkSQL与Hive on Spark的区别与联系  一.关于Spark 简介 在Hadoop的整个生态系统中,Spark和MapR ...

随机推荐

  1. sqlite 使用

    '''SQLite数据库是一款非常小巧的嵌入式开源数据库软件,也就是说 没有独立的维护进程,所有的维护都来自于程序本身. 在python中,使用sqlite3创建数据库的连接,当我们指定的数据库文件不 ...

  2. 获取当前网络中的电脑数目及MAC-通过MAC查找IP-通过IP查询机器名

    Microsoft Windows [版本 ] 版权所有 (c) Microsoft Corporation.保留所有权利. C:\Users\Administrator>netsh netsh ...

  3. serializeObject 的应用

    function sendForm() { var invOrderModelWrapper = {}; // 头 var objHeader = $('#invOrderForm').seriali ...

  4. java 四种方式实现字符流文件的拷贝对比

    将D:\\应用软件\\vm.exe  拷贝到C:\\vm.exe   四种方法耗费时间对比  4>2>3>1 package Copy; import java.io.Buffere ...

  5. HDU 3605 Escape 最大流+状压

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=3605 Escape Time Limit: 2000/1000 MS (Java/Others)    ...

  6. Nessus虚拟机的几个问题解决办法

    1.使用ppp的校园网或者家庭宽带无法通过桥接上网. 这时要把这俩网卡变成NAT模式就行. 2.国外下载插件包(或者过慢). 我这里贡献个高速链接.base64,懂得自然懂. c3NyOi8vTkRj ...

  7. java -agent与Javassist

    javassist api https://blog.csdn.net/u011425751/article/details/51917895 晚些时候再补充一些使用注意事项.

  8. Excel文件处理Demo

    1.BLL业务逻辑代码 /// <summary> /// 处理“店铺竞品销售数据”导入文件 /// </summary> /// <param name="f ...

  9. 邁向IT專家成功之路的三十則鐵律 鐵律十一:IT人應對之道-靈活

    身為一位優秀的IT專家,不能夠只是在技術面的應對能力強,而必須是在人事的應對能力上也要能夠靈活與彈性,否則就算一天給你48小時,你也會把自己的身心弄垮,再強的專業.技術.能力也會瞬間化為泡影. 坦白說 ...

  10. SilverLight: 数据绑定(1)-绑定到数据对象

    ylbtech-SilverLight-DataBinding: Binding to Data Objects(绑定到数据对象) 1.A, Building  a Data Object(创建一个数 ...