## 题目描述

给出N个点的一棵树(N-1条边),节点有白有黑,初始全为白

有两种操作:

0 i : 改变某点的颜色(原来是黑的变白,原来是白的变黑)

1 v : 询问1到v的路径上的第一个黑点,若无,输出-1

输入输出格式

输入格式:

第一行 N,Q,表示N个点和Q个操作

第二行到第N行N-1条无向边

再之后Q行,每行一个操作"0 i" 或者"1 v" (1 ≤ i, v ≤ N).

输出格式:

对每个1 v操作输出结果

输入输出样例

输入样例#1: 复制

9 8

1 2

1 3

2 4

2 9

5 9

7 9

8 9

6 8

1 3

0 8

1 6

1 7

0 2

1 9

0 2

1 9

输出样例#1: 复制

-1

8

-1

2

-1

说明

For 1/3 of the test cases, N=5000, Q=400000.

For 1/3 of the test cases, N=10000, Q=300000.

For 1/3 of the test cases, N=100000, Q=100000.

Solution

这题显然是树链剖分,先把dfs序处理出来,但线段树存什么呢?可以发现,若以1为根,进行dfs序,这样1到每个点之间的最早出现的黑点,显然是dfs序最小值,这样线段树存最小值就行了,我们还要把线段树上的点映射回树中结点。

#include<iostream>
#include<cstdio>
#include<cstring>
#define ll(x) (x*2)
#define rr(x) (x*2+1)
using namespace std;
struct Node
{
int to,next;
}a[201001];
int len,last[200110],siz[201010],son[201100],dep[201001],fa[200010],yuan[200101];
int id[201010],cnt,n,sum[400101],top[400101],mn[400110];
void add(int a1,int a2)
{
a[++len].to=a2;
a[len].next=last[a1];
last[a1]=len;
}
void dfs1(int x,int father)
{
int mxson=-1;siz[x]=1;
for(int i=last[x];i;i=a[i].next)
{
int to=a[i].to;
if(to==father) continue;
dep[to]=dep[x]+1;
fa[to]=x;
dfs1(to,x);
siz[x]+=siz[to];
if(siz[to]>mxson) son[x]=to,mxson=siz[to];
}
}
void dfs2(int x,int topf)
{
id[x]=++cnt;
yuan[cnt]=x;
top[x]=topf;
if(!son[x]) return;
dfs2(son[x],topf);
for(int i=last[x];i;i=a[i].next)
{
int to=a[i].to;
if(to==fa[x]||to==son[x]) continue;
dfs2(to,to);
}
}
void pushup(int node){mn[node]=min(mn[ll(node)],mn[rr(node)]);}
void gai(int node,int l,int r,int pos)
{
if(l==r) {sum[node]^=1;if(sum[node]==1) mn[node]=l;else mn[node]=1e9;return;}
int mid=(l+r)/2;
if(pos<=mid) gai(ll(node),l,mid,pos);
else gai(rr(node),mid+1,r,pos);
pushup(node);
}
int cha(int node,int l,int r,int left,int right)
{
if(l>=left&&r<=right) return mn[node];
int mid=(l+r)/2,ans=1e9;
if(left<=mid) ans=min(ans,cha(ll(node),l,mid,left,right));
if(right>mid) ans=min(ans,cha(rr(node),mid+1,r,left,right));
return ans;
}
int cha1(int x,int y)
{
int ans=1e9;
while(top[x]!=top[y])
{
if(dep[top[x]]<dep[top[y]]) swap(x,y);
ans=min(ans,cha(1,1,n,id[top[x]],id[x]));
x=fa[top[x]];
}
if(dep[x]>dep[y]) swap(x,y);
ans=min(ans,cha(1,1,n,id[x],id[y]));
if(ans==1e9)
return -1;
return yuan[ans];
}
int main()
{
for(int i=0;i<=400000;i++)
mn[i]=1e9;
int q,x,y,opt;
cin>>n>>q;
for(int i=1;i<n;i++)
scanf("%d%d",&x,&y),add(x,y),add(y,x);
dep[1]=1;
dfs1(1,0);
dfs2(1,1);
for(int i=1;i<=q;i++)
{
scanf("%d%d",&opt,&x);
if(opt==0)
gai(1,1,n,id[x]);
else
printf("%d\n",cha1(1,x));
}
}

博主蒟蒻,可以随意转载,但必须附上原文链接k-z-j

Qtree3的更多相关文章

  1. [题解]luogu P4116 Qtree3

    终于来到了Qtree3, 其实这是Qtree系列中最简单的一道题,并不需要线段树, 只要树链剖分的一点思想就吼了. 对于树链剖分剖出来的每一根重链,在重链上维护一个Set就好了, 每一个Set里存的都 ...

  2. SPOJ QTREE3 Query on a tree again! ——Link-Cut Tree

    [题目分析] QTREE2,一看是倍增算法,太懒了,不写了.( ̄_, ̄ ) QTREE3,树链剖分可以做,发现链上的问题LCT也很好做. 要是子树问题貌似可以DFS序. 然后就成LCT模板题了. 考前 ...

  3. 树链剖分&咕咕咕了好久好久的qtree3

    前言 显然qtree系列都是树链剖分辣 发现自己没有专门整理过树链剖分耶 辣么就把这篇博客魔改成树链剖分好辣(貌似除了树剖也没什么好写的) 正文 废话了辣么多终于开始了 一.树剖怎么写鸭 二.树剖有什 ...

  4. QTREE3 spoj 2798. Query on a tree again! 树链剖分+线段树

    Query on a tree again! 给出一棵树,树节点的颜色初始时为白色,有两种操作: 0.把节点x的颜色置反(黑变白,白变黑). 1.询问节点1到节点x的路径上第一个黑色节点的编号. 分析 ...

  5. Qtree3题解(树链剖分(伪)+线段树+set)

    外话:最近洛谷加了好多好题啊...原题入口 这题好像是SPOJ的题,挺不错的.看没有题解还是来一篇... 题意: 很明显吧.. 题解: 我的做法十分的暴力:树链剖分(伪)+线段树+\(set\)... ...

  6. P4116 Qtree3

    思路 可以树剖可以LCT,树剖就是每个重链开一个SET维护一下黑点的深度 非常不优美 使用LCT,在splay上二分找出需要的节点即可 代码 #include <cstdio> #incl ...

  7. Qtree3题解(树链剖分+线段树+set)

    外话:最近洛谷加了好多好题啊...原题入口 这题好像是SPOJ的题,挺不错的.看没有题解还是来一篇... 题意 很易懂吧.. 题解 我的做法十分的暴力:树链剖分(伪)+线段树+ std :: set ...

  8. 洛谷 P4116 Qtree3

    Qtree系列第三题 我是题面 读完题大概不难判断是一道树剖的题 这道题的关键是记录两种状态,以及黑点的序号(不是编号) 线段树啊当然 定义两个变量v,f,v表示距离根节点最近的黑点,默认-1,f则表 ...

  9. 【洛谷 P4116】 Qtree3 (树链剖分)

    题目链接 树剖练手题,想复习下树剖. 第一次提交\(T\)成QQC 看我 ??? 看了数据范围的确挺恶心的,我的复杂度是\(O(Mlog^2N)\)的,数据范围有三段 For 1/3 of the t ...

  10. 树链剖分【p4116】Qtree3 - Query on a tree

    Description 给出N个点的一棵树(N-1条边),节点有白有黑,初始全为白 有两种操作: 0 i : 改变某点的颜色(原来是黑的变白,原来是白的变黑) 1 v : 询问1到v的路径上的第一个黑 ...

随机推荐

  1. linux-3.2.36内核启动1-启动参数(arm平台 启动参数的获取和处理,分析setup_arch)【转】

    转自:http://blog.csdn.net/tommy_wxie/article/details/17093297 最近公司要求调试一个内核,启动时有问题,所以就花了一点时间看看内核启动. 看的过 ...

  2. mysql数据库编码格式

    1.查看数据库编码格式 mysql> show variables like 'character_set_database'; 2.查看数据表的编码格式 mysql> show crea ...

  3. 用jQuery File Upload实现简单的文件上传

    FORM中的代码: {# file_path #} <div class="form-group"> <label class="control-lab ...

  4. 002如何升级 Linux 的内核?

    我们不应该升级 Linux 内核,而是始终使用 rpm 命令来安装新的内核,因为升级内核会让你的 Linux 机器处于一个无法启动的状态.

  5. (42)C#Stopwatch类(计算程序运行时间)

    引入命名空间 using System.Diagnostics; static void Main(string[] args) { Stopwatch sw = new Stopwatch(); s ...

  6. 转 Windows串口过滤驱动程序的开发

    在Windows系统上与安全软件相关的驱动开发过程中,“过滤(filter)”是极其重要的一个概念.过滤是在不影响上层和下层接口的情况下,在Windows系统内核中加入新的层,从而不需要修改上层的软件 ...

  7. Maven更新POM中的JDK版本(比如更新为JDK1.8)

    默认POM如果不指定JDK版本为1.5,而有些项目需要使用泛型这些,就必须使用1.8版本的JDK,所以需要手动修改POM. 而所涉及到的还是插件maven-compiler-plugin,官方参考:h ...

  8. 如果当前地图文档中有独立的Table,通过Engine如何获取该Table?

    将IMap转为ITableCollection,通过ITableCollection.get_Table(int index);来获取该Table

  9. DEV GridControl 常用属性 z

    1隐藏最上面的GroupPanel gridView1.OptionsView.ShowGroupPanel=false; 2.得到当前选定记录某字段的值 sValue=Table.Rows[grid ...

  10. hive界面工具SQL Developer的安装;使用sql developer连接hive;使用sql developer连接mysql

    需要oracle帐号登录后下载 1.下载: http://www.oracle.com/technetwork/developer-tools/sql-developer/downloads/inde ...