【BZOJ4238】电压

Description

你知道Just Odd Inventions社吗?这个公司的业务是“只不过是奇妙的发明(Just Odd Inventions)”。这里简称为JOI社。
JOI社的某个实验室中有着复杂的电路。电路由n个节点和m根细长的电阻组成。节点被标号为1~N
每个节点有一个可设定的状态【高电压】或者【低电压】。每个电阻连接两个节点,只有一端是高电压,另一端是低电压的电阻才会有电流流过。两端都是高电压或者低电压的电阻不会有电流流过。
某天,JOI社为了维护电路,选择了一根电阻,为了能让【只有这根电阻上的电流停止流动,其他M-1根电阻中都有电流流过】,需要调节各节点的电压。为了满足这个条件,能选择的电阻共有多少根?
对了,JOI社这个奇妙的电路是用在什么样的发明上的呢?这是公司内的最高机密,除了社长以外谁都不知道哦~
现在给出电路的信息,请你输出电路维护时可以选择使其不流的电阻的个数。

Input

第一行两个空格分隔的正整数N和M,表示电路中有N个节点和M根电阻。
接下来M行,第i行有两个空格分隔的正整数Ai和Bi(1<=Ai<=N,1<=Bi<=N,Ai≠Bi),表示第i个电阻连接节点Ai和节点Bi。

Output

输出一行一个整数,代表电路维护时可选择的使其不流的电阻个数。

Sample Input

4 4
1 2
2 3
3 2
4 3

Sample Output

2

HINT

可以选择第一根电阻或第四根电阻。
 
2<=N<=10^5
1<=M<=2*10^5
不保证图是连通的,不保证没有重边

题解:题意差不多就是给你一个无向图,让你找出一条边,将它的两个顶点染成相同的颜色,使得剩下的图是一个二分图。

判断二分图就是找奇环,自然要用到DFS树,我们找出这条边后,一定要保证剩下的图中不含奇环。所以,如果一条边被所有奇环包含,我们可以选择它。

但是好像不对?如果一条边既被奇环包含又被偶环包含,那么去掉这条边后,奇半环和偶半环又组合成了一个奇环,所以我们选择的边在满足被所有奇环包含的同时,还要满足不能被偶环包含。

具体方法:用DFS树处理出每条边被多少个奇环和偶环包含就行了。

你可能会疑问:

1.假如原图中没有奇环怎么办?那么任意一条不被偶环覆盖的边都是可行的,你会发现这种情况上面已经处理过了。
2.如果有多个互不相交的奇环怎么办?答案显然是0啊。。。

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
const int maxn=100010;
int n,m,cnt,H1,H2,ans;
int to[maxn<<2],next[maxn<<2],vis[maxn<<2],val[maxn<<1],head[maxn],dep[maxn],h1[maxn],h2[maxn];
inline int z(int x){ return x>0?x:-x;}
int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
void add(int a,int b)
{
to[cnt]=b,next[cnt]=head[a],head[a]=cnt++;
}
void dfs(int x)
{
for(int i=head[x];i!=-1;i=next[i])
{
if(vis[i]) continue;
vis[i^1]=1;
if(!dep[to[i]]) dep[to[i]]=dep[x]+1,dfs(to[i]),h1[x]+=h1[to[i]],h2[x]+=h2[to[i]];
else if((dep[x]-dep[to[i]])&1) H2++,h2[x]++,h2[to[i]]--;
else H1++,h1[x]++,h1[to[i]]--;
}
}
int main()
{
n=rd(),m=rd();
int i,a,b;
memset(head,-1,sizeof(head));
for(i=1;i<=m;i++) a=rd(),b=rd(),add(a,b),add(b,a);
for(i=1;i<=n;i++) if(!dep[i]) dep[i]=1,dfs(i);
for(i=0;i<cnt;i+=2)
{
a=to[i],b=to[i^1];
if(dep[a]<dep[b]) swap(a,b);
if(dep[a]==dep[b]+1)
{
if(h1[a]==H1&&!h2[a]) ans++;
}
else if(!((dep[a]-dep[b])&1)&&H1==1) ans++;
}
printf("%d",ans);
return 0;
}

【BZOJ4238】电压 DFS树的更多相关文章

  1. BZOJ 4238: 电压 DFS树

    分类讨论一下奇环和偶环的情况. code: #include <bits/stdc++.h> #define N 200006 #define setIO(s) freopen(s&quo ...

  2. bzoj4238 & loj2881 电压 二分图判定+dfs树

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4238 https://loj.ac/problem/2881 题解 如果想要让每一条边都有电流 ...

  3. BZOJ_4238_电压_树上差分+dfs树

    BZOJ_4238_电压_树上差分+dfs树 Description 你知道Just Odd Inventions社吗?这个公司的业务是“只不过是奇妙的发明(Just Odd Inventions)” ...

  4. dfs树

    dfs树是解决图中带环的利器. 前天CF的F题就是dfs树,但是当时我没有认真思考 觉着找到一个环过于困难 当时没有想到 也没理解dfs树的意义. 对于一张无向图求出一个dfs树 这个树有两种边 树边 ...

  5. zstu.4191: 无向图找环(dfs树 + 邻接表)

    4191: 无向图找环 Time Limit: 5 Sec  Memory Limit: 128 MB Submit: 117  Solved: 34 Description 给你一副无向图,每条边有 ...

  6. LOJ2250 [ZJOI2017] 仙人掌【树形DP】【DFS树】

    题目分析: 不难注意到仙人掌边可以删掉.在森林中考虑树形DP. 题目中说边不能重复,但我们可以在结束后没覆盖的边覆盖一个重复边,不改变方案数. 接着将所有的边接到当前点,然后每两个方案可以任意拼接.然 ...

  7. Codeforces962F Simple Cycles Edges 【双连通分量】【dfs树】

    题目大意: 给出一个无向图,问有哪些边只属于一个简单环. 题目分析: 如果这道题我们掌握了点双连通分量,那么结论会很显然,找到每个点双,如果一个n个点的点双正好由n条边构成,那么这些边都是可以的. 这 ...

  8. BZOJ5203 [NEERC2017 Northern] Grand Test 【dfs树】【构造】

    题目分析: 首先观察可知这是一个无向图,那么我们构建出它的dfs树.由于无向图的性质我们可以知道它的dfs树只有返祖边.考虑下面这样一个结论. 结论:若一个点的子树中(包含自己)有两个点有到它祖先的返 ...

  9. 【BZOJ4424】Cf19E Fairy DFS树

    [BZOJ4424]Cf19E Fairy Description 给定 n 个点,m 条边的无向图,可以从图中删除一条边,问删除哪些边可以使图变成一个二分图. Input 第 1 行包含两个整数 n ...

随机推荐

  1. webapi net 直接更改协议头

    1.直接更改协议头 [HttpGet] public HttpResponseMessage Users() { var sites = new object(); string str = tool ...

  2. Integer.ParseInt()异常

    这里传参数:bookPage.nextPage,action接收到的是string型. 程序需要将string转成int来使用. 用上try { pageNUmber = Integer.parseI ...

  3. Smpt命令顺序不正确。 服务器响应为: Error: need EHLO and AUTH first !

    刚发现以前做的QQ邮箱发送邮件不能用了,查找了下原因:未加( EnableSsl  SSL加密连接 )导致的,顿时觉得很坑,以前QQ邮箱也没有这个限制啊,可能是最近加的. 好吧不多说直接从头走起,照顾 ...

  4. bitmap自己项目中处理遇到的问题

    String path = "图片路径";Bitmap bitmap = BitmapFactory.decodeFile(path);安卓处理图片都是Bitmap,然后取到图片的 ...

  5. git tag 的使用

    // 查看tag,列出所有tag,列出的tag是按字母排序的,和创建时间没关系. $ git tag v0.1 v1.3 /查看指定版本的tag,git tag -l “v1.4.2.**” $ gi ...

  6. HDU - 2970 Suffix reconstruction

    Discription Given a text s[1..n] of length n, we create its suffix array by taking all its suffixes: ...

  7. 打开与关闭eclipse的自动补全功能

    打开: eclipse→Windows→Preferences→Java→Editor→Content Assist:修改Auto Activation triggers for java的值为:.a ...

  8. Ubuntu 16.04下使用Wine安装Notepad++

    说明: 1.使用的Wine版本是深度出品(Deepin),已经精简了很多没用的配置,使启动能非常快,占用资源小. 2.关于没有.wine文件夹的解决方法:在命令行上运行winecfg: 下载: (链接 ...

  9. 如何在SQLite中创建自增字段

      SQLite 简单的回答:一个声明为 INTEGER PRIMARY KEY 的字段将自动增加. 这里是详细的答案: 从 SQLite 的 2.3.4 版本开始,如果你将一个表中的一个字段声明为 ...

  10. Using CLEAR_BLOCK To Prevent Save Confirmation Dialogs In Oracle Forms

    Clear_Block built-in clears all records from the current data block and if the user had made some ch ...