BZOJ 2119: 股市的预测 SA
2119: 股市的预测
Time Limit: 10 Sec Memory Limit: 259 MB
Submit: 434 Solved: 200
[Submit][Status][Discuss]
Description
墨墨的妈妈热爱炒股,她要求墨墨为她编写一个软件,预测某只股票未来的走势。股票折线图是研究股票的必备工具,它通过一张时间与股票的价位的函数图像清晰地展示了股票的走势情况。经过长时间的观测,墨墨发现很多股票都有如下的规律:之前的走势很可能在短时间内重现!如图可以看到这只股票A部分的股价和C部分的股价的走势如出一辙。通过这个观测,墨墨认为他可能找到了一个预测股票未来走势的方法。进一步的研究可是难住了墨墨,他本想试图统计B部分的长度与发生这种情况的概率关系,不过由于数据量过于庞大,依赖人脑的力量难以完成,于是墨墨找到了善于编程的你,请你帮他找一找给定重现的间隔(B部分的长度),有多少个时间段满足首尾部分的走势完全相同呢?当然,首尾部分的长度不能为零。
Input
输入的第一行包含两个整数N、M,分别表示需要统计的总时间以及重现的间隔(B部分的长度)。接下来N行,每行一个整数,代表每一个时间点的股价。
Output
输出一个整数,表示满足条件的时间段的个数
Sample Input
1 2 3 4 8 9 1 2 3 4 8 9
Sample Output
【样例说明】
6个时间段分别是:3-9、2-10、2-8、1-9、3-11、4-12。
HINT
对于100%的数据,4≤N≤50000 1≤M≤10 M≤N 所有出现的整数均不超过32位含符号整数。
Source
题意:趋势跟斜率有关,既然单位时间为1,那斜率只与Δy有关,差分之后再丢掉第一个点,变成了求 ABA 这样子串个数。|B|=m,|A|>0
想法:求ABA,先想到两个暴力:
1、枚举区间,SA+ST O(1)判断。O(n^2)
2、枚举长度以及起点,O(n^2)
然后优化第二个:不枚举起点。每隔 L 长度就设置一个哨兵。如果枚举起点的话,所有ABA中第一个A都会经过这个哨兵,并且是连续的。
于是可以这样统计多少个起点合法:L=lcs([1...x],[1...x+l+m]),R=lcp([x....n],[x+l+m...n]。防止越界没有保证|B|=m,L=min(L,l),R=min(R,l)
ans+=L+R-l。
所以一个哨兵O(1)回答,共(n/1+n/2+n/3.....1)≈O(nlogn)个哨兵。最后复杂度O(nlogn)。
记得要离散....
#include<cstdio>
#include<cstring>
#include<algorithm> typedef long long ll;
const int len();
ll a[len+],d[len+],ans;
int n,B,id[len+];
struct AXLE
{
ll a[len+];int up;
void deal()
{
for(int i=;i<=n;i++)a[++up]=d[i];
std::sort(a+,a++up);
int _up=;
for(int i=;i<=up;i++)if(a[i]!=a[i-])a[++_up]=a[i];
up=_up;
}
int two(ll x)
{
int ans=up;
for(int l=,r=up,mid;l<=r;)
if(a[mid=(l+r)>>]<=x)l=mid+,ans=mid;else r=mid-;
return ans;
}
}axle; int cnt[len+],tmp[len+],p[len+],f[][len+],logg[len+];
void swap(int &x,int &y){x^=y;y^=x;x^=y;}
int min(int a,int b){return a>b?b:a;}
int max(int a,int b){return a<b?b:a;}
void Fdeal()
{
logg[]=-;
for(int i=;i<=n;i++)logg[i]=logg[i>>]+,f[][i]=i+;
for(int j=;j<=logg[n];j++)
for(int i=;i<=n;i++)f[j][i]=f[j-][ f[j-][i] ];
}
struct SA
{
int str[len+],now,limt;
int sfa[len+],rank[len+],height[len+];
void put(int ty)
{
if(ty)for(int i=;i<=n;i++)str[i]=d[i];
else for(int i=;i<=n;i++)str[i]=d[n-i+];
now=n;limt=axle.up;
// fprintf(stderr,"now=%d\n",now);
}
bool cmp(int x,int y,int l){return x+l<=now&&y+l<=now&&rank[x]==rank[y]&&rank[x+l]==rank[y+l];}
void doubling()
{
// fprintf(stderr,"doubling\n");
// fprintf(stderr,"now=%d\n",now);
for(int i=;i<=now;i++)rank[i]=str[i],sfa[i]=i;
for(int l=,pos=,sigma=limt;pos<now;sigma=pos)
{
pos=;
for(int i=now-l+;i<=now;i++)p[++pos]=i;
for(int i=;i<=now;i++)if(sfa[i]>l)p[++pos]=sfa[i]-l;
memset(cnt,,sizeof(int)*(sigma+)); pos=;
for(int i=;i<=now;i++)cnt[rank[i]]++;
for(int i=;i<=sigma;i++)cnt[i]+=cnt[i-];
for(int i=now;i>=;i--)sfa[cnt[rank[p[i]]]--]=p[i];
for(int i=;i<=now;i++)tmp[sfa[i]]=cmp(sfa[i],sfa[i-],l)?pos:++pos;
for(int i=;i<=now;i++)rank[i]=tmp[i];
l=!l?:l<<;
}
for(int i=;i<=now;i++)rank[sfa[i]]=i;
for(int i=,j,k;i<=now;i++)
{
k=sfa[rank[i]-]; if(!k)continue;
j=height[rank[i-]]; if(j)j--;
while(str[i+j]==str[k+j])
j++;
height[rank[i]]=j;
}
// fprintf(stderr,"now=%d\n",now);
// for(int i=1;i<=now;i++)
// fprintf(stderr,"h=%d\n",height[i]);
}
int g[][len+];
//lcp(x,y)=min[x,y-1]
void Gdeal()
{
for(int i=;i<=now;i++)g[][i]=height[i+];
for(int j=;j<=logg[now];j++)
for(int i=;i<=now;i++) g[j][i]=min(g[j-][i],g[j-][ f[j-][i] ]);
}
int lcp(int x,int y)
{
// fprintf(stderr,"1:x= %d y=%d\n",x,y);
x=rank[x];y=rank[y];
if(x>y)swap(x,y); y--;
// fprintf(stderr,"2:x= %d y=%d\n",x,y);
// for(int i=x+1;i<=y;i++)
// fprintf(stderr,"3:h=%d\n",height[i]);
int k=logg[y-x+];
int w=<<k;
return min(g[k][x],g[k][y-w+]);
}
void build(int ty)
{
put(ty); doubling(); Gdeal();
}
}pre,suc;
int main()
{
scanf("%d %d",&n,&B);
for(int i=;i<=n;i++)scanf("%lld",a+i),d[i-]=a[i]-a[i-];
n--;axle.deal();
// fprintf(stderr,"n=%d B=%d\n",n,B);
for(int i=;i<=n;i++)d[i]=axle.two(d[i]);
Fdeal(); pre.build(); suc.build();
for(int l=,LL,RR;l+l+B<=n;l++)
for(int i=l,x,y;i+l+B-<=n;i+=l)
{
// fprintf(stderr,"x= %d y= %d\n",i,i+l+B);
x=i; y=i+l+B;
LL=pre.lcp(n-y+,n-x+); RR=suc.lcp(x,y);
// fprintf(stderr,"LL= %d RR= %d l=%d\n",LL,RR,l);
ans+=max(,min(LL,l)+min(RR,l)-l);
// fprintf(stderr,"ans=%lld\n",ans);
}
printf("%lld",ans);
return ;
}
BZOJ 2119: 股市的预测 SA的更多相关文章
- BZOJ 2119: 股市的预测 [后缀数组 ST表]
2119: 股市的预测 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 331 Solved: 153[Submit][Status][Discuss ...
- bzoj 2119: 股市的预测
Description 墨墨的妈妈热爱炒股,她要求墨墨为她编写一个软件,预测某只股票未来的走势.股票折线图是研究股票的必备工具,它通过一张时间与股票的价位的函数图像清晰地展示了股票的走势情况.经过长时 ...
- ●BZOJ 2119 股市的预测
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2119 题解: 这个题很好的. 首先把序列转化为差分序列,问题转化为找到合法的子序列,使得去除 ...
- bzoj 2119 股市的预测——枚举长度的关键点+后缀数组
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2119 就是找差分序列上中间差 m 的相等的两段. 考虑枚举这样一段的长度 L .可以把序列分 ...
- bzoj 2119 股市的预测 —— 枚举关键点+后缀数组
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2119 思路就是对于这个形如 ABA 的串,枚举 A 的长度,并按照长度分出几块,找到一些关键 ...
- BZOJ 2119 股市的预测 (后缀数组+RMQ)
题目大意:求一个字符串中形如$ABA$的串的数量,其中$B$的长度是给定的 有点像[NOI2016]优秀的拆分这道题 先对序列打差分,然后离散,再正反跑$SA$,跑出$st$表 进入正题 $ABA$串 ...
- BZOJ 2119 股市的预测(后缀数组)
首先要差分+离散化. 然后就是求形如ABA的串有多少,其中B的长度确定为k. 我们用到了设置关键点的思想.我们枚举A的长度L.然后在\(1,1+L,1+L*2,1+L*3...\)设置关键点.然后我们 ...
- BZOJ 2119: 股市的预测 (Hash / 后缀数组 + st表)
转博客大法好 自己画一画看一看,就会体会到这个设置关键点的强大之处了. CODE(sa) O(nlogn)→1436msO(nlogn)\to 1436msO(nlogn)→1436ms #inclu ...
- 【BZOJ 2119】 2119: 股市的预测 (后缀数组+分块+RMQ)
2119: 股市的预测 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 404 Solved: 188 Description 墨墨的妈妈热爱炒股,她 ...
随机推荐
- 2. DVWA亲测文件包含漏洞
Low级: 我们分别点击这几个file.php文件 仅仅是配置参数的变化: http://127.0.0.1/DVWA/vulnerabilities/fi/?page=file3.php 如 ...
- 一个工程多个Target
当我们同一个工程需要在不同情形下编译打包,比如打个人包.企业包的时候,其中可能有一些细小的差别,又不想每次都先修改再打包的时候,我们可以通过创建多个Target来实现. 1.copy原有Target ...
- CABasicAnimation动画及其keypath值和作用
//tarnsform放大缩小动画 CABasicAnimation *animation = [CABasicAnimation animationWithKeyPath:@"transf ...
- c/c++ 获取mysql数据库以blob类型储存的图片
简单的code如下: #include <iostream> #include <fstream> #include <sstream> #include < ...
- 60行代码实现一个迷你版Vue Router
这是一个超级精简版的VueRouter,实现hash模式下,hash改变组件切换的功能,原理就是利用了 Vue.js 的响应式机制触发router-view组件的重新渲染. 代码 https://gi ...
- thinkphp5实现mysql数据库还原
数据库还原其实就是从.sql文件中读取一行一行的命令,然后执行 需要配置数据库文件database.php,数据库名,主机名,用户名,密码这里就不说了,这里说的要配置数据库连接参数 'params' ...
- 本机和虚拟机互联 设置静态IP vmware 虚拟网络 桥接 NAT 仅主机 自定义
- VlAN-9-存储VLAN配置
vlan和vtp配置可能存储在vlan.dat和运行配置中 对于vtp v3来说无论哪种模式正常和拓展范围的vlan都被存储在vlan.dat文件中,如果为透明或off,vlan配置也会出现在运行配置 ...
- 最长回文子串--轻松理解Manacher算法
最长回文子串这个问题的Manacher算法,看了很多博客,好不容易理解了,做一下记录. 这个算法的核心就是:将已经查询过的子字符串的最右端下标保存下来,在计算下标为i的回文字符串时,不需要从左右相邻的 ...
- NET API 分析器
NET API 分析器 https://www.hanselman.com/blog/WritingSmarterCrossplatformNETCoreAppsWithTheAPIAnalyzerA ...