B. Get Many Persimmon Trees

Time Limit: 1000ms
Memory Limit: 30000KB

64-bit integer IO format: %lld      Java class name: Main

Seiji Hayashi had been a professor of the Nisshinkan Samurai School in the domain of Aizu for a long time in the 18th century. In order to reward him for his meritorious career in education, Katanobu Matsudaira, the lord of the domain of Aizu, had decided to grant him a rectangular estate within a large field in the Aizu Basin. Although the size (width and height) of the estate was strictly specified by the lord, he was allowed to choose any location for the estate in the field. Inside the field which had also a rectangular shape, many Japanese persimmon trees, whose fruit was one of the famous products of the Aizu region known as 'Mishirazu Persimmon', were planted. Since persimmon was Hayashi's favorite fruit, he wanted to have as many persimmon trees as possible in the estate given by the lord. 
For example, in Figure 1, the entire field is a rectangular grid whose width and height are 10 and 8 respectively. Each asterisk (*) represents a place of a persimmon tree. If the specified width and height of the estate are 4 and 3 respectively, the area surrounded by the solid line contains the most persimmon trees. Similarly, if the estate's width is 6 and its height is 4, the area surrounded by the dashed line has the most, and if the estate's width and height are 3 and 4 respectively, the area surrounded by the dotted line contains the most persimmon trees. Note that the width and height cannot be swapped; the sizes 4 by 3 and 3 by 4 are different, as shown in Figure 1. 
 
Figure 1: Examples of Rectangular Estates
Your task is to find the estate of a given size (width and height) that contains the largest number of persimmon trees.

 

Input

The input consists of multiple data sets. Each data set is given in the following format.


W H 
x1 y1 
x2 y2 
... 
xN yN 
S T

N is the number of persimmon trees, which is a positive integer less than 500. W and H are the width and the height of the entire field respectively. You can assume that both W and H are positive integers whose values are less than 100. For each i (1 <= i <= N), xi and yi are coordinates of the i-th persimmon tree in the grid. Note that the origin of each coordinate is 1. You can assume that 1 <= xi <= W and 1 <= yi <= H, and no two trees have the same positions. But you should not assume that the persimmon trees are sorted in some order according to their positions. Lastly, S and T are positive integers of the width and height respectively of the estate given by the lord. You can also assume that 1 <= S <= W and 1 <= T <= H.

The end of the input is indicated by a line that solely contains a zero.

 

Output

For each data set, you are requested to print one line containing the maximum possible number of persimmon trees that can be included in an estate of the given size.

 

Sample Input

16
10 8
2 2
2 5
2 7
3 3
3 8
4 2
4 5
4 8
6 4
6 7
7 5
7 8
8 1
8 4
9 6
10 3
4 3
8
6 4
1 2
2 1
2 4
3 4
4 2
5 3
6 1
6 2
3 2
0

Sample Output

4
3 解题:题目比较长啊。。。开始没高清意思。。。鸟语太挫了。。。给出平面上n个点,最后要在这个平面内找出一个举行内部点数最多的指定长宽的矩形,输出最多包括的点数。
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <climits>
#include <vector>
#include <queue>
#include <cstdlib>
#include <string>
#include <set>
#define LL long long
#define INF 0x3f3f3f
using namespace std;
const int maxn = ;
int tree[maxn][maxn];
int lowbit(int x) {
return x&(-x);
}
void update(int x,int y,int val) {
for(int i = x; i < maxn; i += lowbit(i)) {
for(int j = y; j < maxn; j += lowbit(j)) {
tree[i][j] += val;
}
}
}
int sum(int x,int y) {
int ans = ;
for(int i = x; i; i -= lowbit(i)) {
for(int j = y; j; j -= lowbit(j)) {
ans += tree[i][j];
}
}
return ans;
}
int main() {
int n,w,h,x,y;
while(scanf("%d",&n),n) {
scanf("%d%d",&w,&h);
memset(tree,,sizeof(tree));
for(int i = ; i < n; i++) {
scanf("%d%d",&x,&y);
update(x,y,);
}
scanf("%d%d",&x,&y);
int ans = ,temp;
for(int i = x; i <= w; i++) {
for(int j = y; j <= h; j++) {
temp = sum(i,j) - sum(i-x,j) - sum(i,j-y) + sum(i-x,j-y);
if(temp > ans) ans = temp;
}
}
printf("%d\n",ans);
}
return ;
}

xtu数据结构 B. Get Many Persimmon Trees的更多相关文章

  1. POJ 2029 Get Many Persimmon Trees

    Get Many Persimmon Trees Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 3243 Accepted: 2 ...

  2. POJ2029——Get Many Persimmon Trees

    Get Many Persimmon Trees Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 3656   Accepte ...

  3. (简单) POJ 2029 Get Many Persimmon Trees,暴力。

    Description Seiji Hayashi had been a professor of the Nisshinkan Samurai School in the domain of Aiz ...

  4. poj2029 Get Many Persimmon Trees

    http://poj.org/problem?id=2029 单点修改 矩阵查询 二维线段树 #include<cstdio> #include<cstring> #inclu ...

  5. POJ-2029 Get Many Persimmon Trees(动态规划)

    Get Many Persimmon Trees Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 3987 Accepted: 2 ...

  6. POJ 2029 Get Many Persimmon Trees (二维树状数组)

    Get Many Persimmon Trees Time Limit:1000MS    Memory Limit:30000KB    64bit IO Format:%I64d & %I ...

  7. POJ2029:Get Many Persimmon Trees(二维树状数组)

    Description Seiji Hayashi had been a professor of the Nisshinkan Samurai School in the domain of Aiz ...

  8. 数据结构:Binary and other trees(数据结构,算法及应用(C++叙事描述语言)文章8章)

    8.1 Trees -->root,children, parent, siblings, leaf; level, degree of element 的基本概念 8.2 Binary Tre ...

  9. POJ 2029 Get Many Persimmon Trees(DP||二维树状数组)

    题目链接 题意 : 给你每个柿子树的位置,给你已知长宽的矩形,让这个矩形包含最多的柿子树.输出数目 思路 :数据不是很大,暴力一下就行,也可以用二维树状数组来做. #include <stdio ...

随机推荐

  1. 异步 BeginInvoke

    委托的异步调用异步多线程的三大特点:1.同步方法卡界面,原因是主线程被占用:异步方法不卡界面,原因是计算交给了别的线程,主线程空闲2.同步方法慢,原因是只有一个线程计算:异步方法快,原因是多个线程同事 ...

  2. Kafka-broker配置说明

    配置文件在config/server.properties 下面的一些配置可能是你需要进行修改的. broker.id 整数,建议根据ip区分 log.dirs kafka存放消息文件的路径, 默认/ ...

  3. python基础一 day13 生成器

    #生成器函数# def generator():# print(1)# return 'a'## ret = generator()# print(ret) #只要含有yield关键字的函数都是生成器 ...

  4. 标注偏置问题(Label Bias Problem)和HMM、MEMM、CRF模型比较<转>

    转自http://blog.csdn.net/lskyne/article/details/8669301 路径1-1-1-1的概率:0.4*0.45*0.5=0.09 路径2-2-2-2的概率:0. ...

  5. OpenCascade:屏闪问题。

    1.在OnDraw中同时调用用V3d_View::Redaw()和 V3d_View::FitAll();可暂时解决. 2.在OnDraw中同时调用用V3d_View::Update();

  6. 第1节 flume:11、flume的failover机制实现高可用

    1.4 高可用Flum-NG配置案例failover 在完成单点的Flume NG搭建后,下面我们搭建一个高可用的Flume NG集群,架构图如下所示: 图中,我们可以看出,Flume的存储可以支持多 ...

  7. 一款App的开发成本是多少?

    答一: 接触过上万名创业者,开发上线过超过30款App,没有比我更适合回答这个问题的了.. 本文对想做好一款App项目的人来说这是一篇价值百万的回答!因为这是我们花了几百万试错成本试出来的经验! &l ...

  8. tomcat中如何禁止和允许主机或地址访问

    1.tomcat中如何禁止和允许列目录下的文件 在{tomcat_home}/conf/web.xml中,把listings参数设置成false即可,如下: <servlet>...< ...

  9. kafka启动报错&问题解决

    kafka启动报错&问题解决 一早上班,就收到运维同事通知说有一台物理机宕机,导致虚拟机挂了.只得重启kafka服务器. 1.启动 启动zookeeper bin/zkServer.sh st ...

  10. AOP日志组件 多次获取post参数

    AOP日志组件 多次获取post参数 需求:新增接口日志组件.通过拦截器对接口URL进行拦截处理,然后将接口post请求的参数与结果,写入日志表. 问题:POST方法的参数是存储在request.ge ...