题目大意

lqp在为出题而烦恼,他完全没有头绪,好烦啊…

他首先想到了整数拆分。整数拆分是个很有趣的问题。给你一个正整数N,对于N的一个整数拆分就是满足任意m>0,a1 ,a2 ,a3…am>0,且a1+a2+a3+…+am=N的一个有序集合。通过长时间的研究我们发现了计算对于N的整数拆分的总数有一个很简单的递推式,但是因为这个递推式实在太简单了,如果出这样的题目,大家会对比赛毫无兴趣的。

然后lqp又想到了斐波那契数。定义F0=0,F1=1,Fn=Fn-1+Fn-2 (n>1),Fn就是斐波那契数的第n项。但是求出第n项斐波那契数似乎也不怎么困难…

lqp为了增加选手们比赛的欲望,于是绞尽脑汁,想出了一个有趣的整数拆分,我们暂且叫它:整数的lqp拆分。和一般的整数拆分一样,整数的lqp拆分是满足任意m>0,a1 ,a2 ,a3…am>0,且a1+a2+a3+…+am=N的一个有序集合。但是整数的lqp拆分要求的不是拆分总数,相对更加困难一些。对于每个拆分,lqp定义这个拆分的权值Fa1Fa2…Fam,他想知道对于所有的拆分,他们的权值之和是多少?简单来说,就是求

由于这个数会十分大,lqp稍稍简化了一下题目,只要输出对于N的整数lqp拆分的权值和mod (109+7)输出即可。

关于输入

输入的第一行包含一个整数N。

关于输出

输出一个整数,为对于N的整数lqp拆分的权值和mod (109+7)。

样例输入

3

样例输出

5

数据范围

30%:  0<N<=1000

100%:   N<106

题解:

可以发现这是一个数列,递推式为:a[n]=2*a[n-1]+a[n-2]

#include<cstdio>
#include<iostream>
#define mod 1000000007
using namespace std;
typedef long long lol;
lol f[],n;
int main()
{
scanf("%lld",&n);
f[]=;
for(lol i=;i<=n;i++)f[i]=(*f[i-]+f[i-])%mod;
printf("%lld\n",f[n]);
}

整数的lqp拆分的更多相关文章

  1. [BZOJ2173]整数的lqp拆分

    [题目描述] lqp在为出题而烦恼,他完全没有头绪,好烦啊… 他首先想到了整数拆分.整数拆分是个很有趣的问题.给你一个正整数N,对于N的一个整数拆分就是满足任意m>0,a1 ,a2 ,a3…am ...

  2. BZOJ 2173: 整数的lqp拆分( dp )

    靠着暴力+直觉搞出递推式 f(n) = ∑F(i)f(n-i) (1≤i≤n) (直接想大概也不会很复杂吧...). f(0)=0 感受一下这个递推式...因为和斐波那契有关..我们算一下f(n)+f ...

  3. BZOJ 2173 luoguo P4451 [国家集训队]整数的lqp拆分

    整数的lqp拆分 [问题描述] lqp在为出题而烦恼,他完全没有头绪,好烦啊… 他首先想到了整数拆分.整数拆分是个很有趣的问题.给你一个正整数N,对于N的一个整数拆分就是满足任意m>0,a1 , ...

  4. 打表\数学【bzoj2173】: 整数的lqp拆分

    2173: 整数的lqp拆分 Description lqp在为出题而烦恼,他完全没有头绪,好烦啊- 他首先想到了整数拆分.整数拆分是个很有趣的问题.给你一个正整数N,对于N的一个整数拆分就是满足任意 ...

  5. BZOJ2173 整数的lqp拆分(生成函数)

    首先有序整数拆分有个显然的递推式是g(n)=Σg(i) (i=0~n-1),即枚举加入最后一个数之前和是多少.(虽然不用递推式也能显然地知道答案是2n-1). 类似地,lqp拆分有递推式f(n)=Σf ...

  6. [国家集训队]整数的lqp拆分

    我们的目标是求$\sum\prod_{i=1}^m F_{a_i}$ 设$f(i) = \sum\prod_{j=1}^i F_{a_j}$那么$f(i - 1) = \sum\prod_{j=1}^ ...

  7. BZOJ 2173 整数的lqp拆分

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2173 题意:给出输出n.设一种拆分为n=x1+x2+x3,那么这种拆分的价值为F(x1) ...

  8. 洛谷P4451 [国家集训队]整数的lqp拆分 [生成函数]

    传送门 题意简述:语文不好不会写,自己看吧 思路如此精妙,代码如此简洁,实是锻炼思维水经验之好题 这种题当然是一眼DP啦. 设\(dp_n\)为把\(n\)拆分后的答案.为了方便我们设\(dp_0=1 ...

  9. Luogu4451 [国家集训队]整数的lqp拆分

    题目链接:洛谷 题目大意:求对于所有$n$的拆分$a_i$,使得$\sum_{i=1}^ma_i=n$,$\prod_{i=1}^mf_{a_i}$之和.其中$f_i$为斐波那契数列的第$i$项. 数 ...

随机推荐

  1. xxx referenced from: xxx in xxx.o

    情形一:可能是有一些源码文件没有加入工程所导致的,找到相应的.h和.m文件,将其add进入项目工程即可解决这种问题. 情形二:也有可能是某些framework没有加入项目中, 示例:   Undefi ...

  2. zepto.fullpage

    内容来自:颜海镜 <!DOCTYPE html> <html lang="en"> <head> <meta charset=" ...

  3. PHP 流程控制

    流程控制 if, else, elseif $a = 5; $b = 9; if ($a > $b): echo "a is bigger than b"; elseif ( ...

  4. jupyter-notebook重设项目工作路径

    一. . Anaconda Prompt 命令(方法没生效) 1 选择一个用于存放config文件的文件夹(先创建) 2 在cmd中进入该文件夹的路径 3在cmd中 输入​命令 jupyter not ...

  5. dubbo的扩展点重构

    可扩展设计是框架要重点考虑的设计,因为它直接影响到框架的稳定性和功能的扩展,Dubbo扩展点重构.它在扩展性设计上踩过的坑,值得框架设计者借鉴学习. 第一步,微核心,插件式,平等对待第三方 即然要扩展 ...

  6. bzoj 4453 cys就是要拿英魂! —— 后缀数组+单调栈+set

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4453 这种问题...一般先把询问离线,排序: 区间对后缀排名的影响在于一些排名大而位置靠后的 ...

  7. 【转】有的共享软件赚了一百万美元,而为什么你没有?&&我的软件推广成功之路

    有的共享软件赚了一百万美元,而为什么你没有? 转自:http://blog.csdn.net/wangjiwei2010/article/details/1267044 译:DreamGoal 原作: ...

  8. ELK安装配置简单使用

    ELK是三款软件的总称,包括了elasticsearch.logstash.kibana,其实在生产使用中,我们还需要使用到其他的更多辅助软件来更好更合理的收集展示数据. Elasticsearch: ...

  9. Hibernate注解详细介绍

    引自http://blog.csdn.net/lin_yongrui/article/details/6855394 声明实体Bean      @Entity   public class Flig ...

  10. 使用BIND安装智能DNS服务器(三)---添加view和acl配置

    智能DNS的配置主要修改named.conf文件,利用view和acl来实现. acl文件内容,这里只列出一部分,具体详细的可以参考这个网址 纯真IP库,给出了十分详细的IP地址,下载安装后,打开软件 ...