已知正整数a0,a1,b0,b1,设某未知正整数x满足:

1. x 和 a0 的最大公约数是 a1​;

2. x 和 b0​ 的最小公倍数是b1。

Hankson 的“逆问题”就是求出满足条件的正整数x。但稍加思索之后,他发现这样的x 并不唯一,甚至可能不存在。因此他转而开始考虑如何求解满足条件的 x 的个数。请你帮助他编程求解这个问题。

输入输出格式

输入格式:

第一行为一个正整数 n,表示有 n 组输入数据。接下来的 n 行每行一组输入数据,为四个正整数 a0,a1,b0,b1​,每两个整数之间用一个空格隔开。输入数据保证 a0 能被 a1 整除,b1​ 能被 b0 整除。

输出格式:

共 n 行。每组输入数据的输出结果占一行,为一个整数。

对于每组数据:若不存在这样的 x,请输出 0;

若存在这样的 x,请输出满足条件的x的个数;

输入输出样例

输入样例#1:

2
41 1 96 288
95 1 37 1776
输出样例#1:

6
2

说明

【说明】

第一组输入数据,x可以是 9,18,36,72,144,288,共有 6 个。

第二组输入数据,x可以是48,1776,共有 2 个。

【数据范围】

对于 50%的数据,保证有 1≤a0,a1,b0,b1≤10000 且n≤100。

对于 100%的数据,保证有 1≤a0,a1,b0,b1≤2,000,000,000 且 n≤2000。

NOIP 2009 提高组 第二题

学习大佬的思路~

纸上写一下题面即:gcd(x, a0) = a1; lcm(x, b0) = b1;

然后按照gcd的常用套路变换一下可知gcd(x / a1, a0 / a1) = 1。而lcm即为x * b0 / gcd(x, b0) = b1,做一下等式变换并使用同样的套路可得gcd(b1 / x, b1 / b0) = 1。

那么x为b1的约数,就可以√b1去枚举了,同时满足上述两个条件即可。记得枚举x的时候b1 / x也顺便判断一下,以及不可以用a1的倍数去枚举x,因为有些x虽然不是a1的倍数,但b1 / x却是,会漏。

 #include <cstdio>
#include <algorithm>
#define R(x) scanf("%d", &x)
#define W(x) printf("%d\n", x)
using namespace std; int main() {
int T, a0, a1, b0, b1; R(T);
while (T--) {
R(a0), R(a1), R(b0), R(b1); int ans = ;
int p = a0 / a1, q = b1 / b0; for (int x = ; x * x <= b1; x++)
if (b1 % x == ) {
if (x % a1 == && __gcd(x / a1, p) == && __gcd(b1 / x, q) == )
ans++; int y = b1 / x;
if (x == y)
continue; if (y % a1 == && __gcd(y / a1, p) == && __gcd(b1 / y, q) == )
ans++;
} W(ans);
} return ;
}

洛谷1072(gcd的运用)的更多相关文章

  1. 洛谷P2398 GCD SUM (数学)

    洛谷P2398 GCD SUM 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入 ...

  2. 洛谷 P1890 gcd区间

    P1890 gcd区间 题目提供者 洛谷OnlineJudge 标签 数论(数学相关) 难度 普及/提高- 题目描述 给定一行n个正整数a[1]..a[n]. m次询问,每次询问给定一个区间[L,R] ...

  3. 洛谷P2568 GCD(线性筛法)

    题目链接:传送门 题目: 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 ...

  4. 洛谷P2568 GCD (欧拉函数/莫比乌斯反演)

    P2568 GCD 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 输入 ...

  5. 洛谷1890 gcd区间

    题目描述 给定一行n个正整数a[1]..a[n].m次询问,每次询问给定一个区间[L,R],输出a[L]..a[R]的最大公因数. 输入输出格式 输入格式: 第一行两个整数n,m.第二行n个整数表示a ...

  6. 洛谷p1072 gcd,质因数分解

    /* 可以得a>=c,b<=d,枚举d的质因子p 那么a,b,c,d,x中包含的p个数是ma,mb,mc,md,mx 在gcd(a,x)=c中 ma<mc => 无解 ma=m ...

  7. 洛谷P2398 GCD SUM [数论,欧拉筛]

    题目传送门 GCD SUM 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入格式 ...

  8. 洛谷P1890 gcd区间

    题目描述 给定一行n个正整数a[1]..a[n]. m次询问,每次询问给定一个区间[L,R],输出a[L]..a[R]的最大公因数. 输入输出格式 输入格式: 第一行两个整数n,m. 第二行n个整数表 ...

  9. 洛谷P2398 GCD SUM

    题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入格式: n 输出格式: sum ...

随机推荐

  1. Android 反编译工具

    想必玩安卓的童鞋大多都知道,安卓的APK安装包是可以反编译出源代码的,如果开发人员发布时没有对其混淆等加密处理,反编译出来的代码几乎与真实的源代码一模一样. 想要反编译apk,需要用到apktool. ...

  2. 打造基于Ubuntu+XBMC的家庭媒体中心

    作为一名高清爱好者,一直想配置一台HTPC放家里实现高清播放外加家庭服务器功能.Nvidia的Ion平台自然是高清平台的硬件首选,而家庭媒体中心的软件端则首先考虑开发的已经很成熟的开源利器 XBMC  ...

  3. 【整理】XOR:从陌生到头晕

    一:解决XOR常用的方法: 在vjudge上面输入关键词xor,然后按照顺序刷了一些题. 然后大概悟出了一些的的套路: 常用的有贪心,主要是利用二进制的一些性质,即贪心最大值的尽量高位取1. 然后有前 ...

  4. bzoj2257瓶子与燃料——最大公约数

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2257 可以知道最终能够导出的燃料一定是瓶子容量的gcd的倍数,所以此题转化为求n个数中k个数 ...

  5. bzoj1195

    AC自动机+状压dp 多串匹配要想ac自动机 dp[i][S]表示在i状态选中S 转移就用bfs,每个点通过fail收集信息,不要忘记通过fail传递 昨天搞不明白为什么自动机每次只可以转移儿子,不可 ...

  6. Git简单教程

    该笔记总结廖雪峰Git教程, 参考网站: https://www.liaoxuefeng.com/wiki/0013739516305929606dd18361248578c67b8067c8c017 ...

  7. Ubuntu 安装indicator-sysmonitor

    之前就像安装一个软件用来查看Ubuntu的CPU, 内存, 网速情况, 终于让我碰到了--indicator-sysmonitor 仅需三条命令, 你值得拥有: sudo add-apt-reposi ...

  8. eclipse编辑窗口不见了(打开左边的java、xml文件,中间不会显示代码)

    转自:https://blog.csdn.net/u012062810/article/details/46729779?utm_source=blogxgwz4 1. windows-->re ...

  9. office2016出现 此功能看似已中断 并需要修复

  10. Android开发--数据存储之File文件存储

    转载来自:http://blog.csdn.net/ahuier/article/details/10364757,并进行扩充 引言:Android开发中的数据存储方式 Android提供了5种方式存 ...