hdu 4565
Where a, b, n, m are positive integers.┌x┐is the ceil of x. For example, ┌3.14┐=4. You are to calculate Sn.
You, a top coder, say: So easy!
2 3 2 2013
2 2 1 2013
14
4
(a+sqrt(b))^n向上取整%M
令A(n)=(a+sqrt(b))^n,B(n)=(a-sqrt(b))^n
易得C(n)=A(n)+B(n)为整数
例如:2.3+0.7 ,由于(a-)^<b<a^,因此B(n)为小于1的小数
那么A(n)向上取整的结果就是C(n),题目也就是求C(n)%M
#include <iostream>
#include <cstring>
#include <string>
#include <queue>
#include <set>
#include <cmath>
#include <cstdio>
#include <algorithm>
#include <cstdlib>
#define ll long long
#define max(x,y) (x>y?x:y)
#define min(x,y) (x<y?x:y)
#define gep(i,a,b) for(ll i=a;i<=b;i++)
using namespace std;
ll a,b,n,mod;
/*
矩阵乘法的相乘矩阵的行数、列数都要一样,这和行列式不同。
*/
struct ma{
ll m[][];
ma(){
memset(m,,sizeof(m));
}
};
ma qu(ma a,ma b,ll mod){
ma c;
gep(k,,){
gep(i,,){
if(a.m[i][k]){
gep(j,,){
c.m[i][j]=(c.m[i][j]+a.m[i][k]*b.m[k][j]%mod+mod)%mod;
}
}
}
}
return c;
}
ma quick_qu(ma a,ll b,ll mod){
ma c;
gep(i,,){
c.m[i][i]=1ll;
}
while(b){
if(b&) c=qu(c,a,mod);
b>>=;
a=qu(a,a,mod);
}
return c;
}
int main()
{
while(~scanf("%lld%lld%lld%lld",&a,&b,&n,&mod)){
if(n==){
printf("%lld\n",*a%mod);
continue;
}
ma c;
c.m[][]=*a;c.m[][]=b-a*a;
c.m[][]=;c.m[][]=;
ma d;
d.m[][]=*a*a*a+*a*b;d.m[][]=*a*a+*b;d.m[][]=*a;
ma e=quick_qu(c,n-,mod);
ma f;
f=qu(e,d,mod); //矩阵乘法不满足交换律,e,d位置不能换。
printf("%lld\n",f.m[][]);
}
return ;
}
hdu 4565的更多相关文章
- HDU 4565 So Easy!(矩阵)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4565 题意: 题意: #include <iostream>#include <cs ...
- HDU 4565 So Easy! 数学 + 矩阵 + 整体思路化简
http://acm.hdu.edu.cn/showproblem.php?pid=4565 首先知道里面那个东西,是肯定有小数的,就是说小数部分是约不走的,(因为b限定了不是一个完全平方数). 因为 ...
- hdu 4565 So Easy! (共轭构造+矩阵快速幂)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4565 题目大意: 给出a,b,n,m,求出的值, 解题思路: 因为题目中出现了开根号,和向上取整后求 ...
- 【构造共轭函数+矩阵快速幂】HDU 4565 So Easy! (2013 长沙赛区邀请赛)
[解题思路] 给一张神图,推理写的灰常明白了,关键是构造共轭函数,这一点实在是要有数学知识的理论基础,推出了递推式,接下来就是矩阵的快速幂了. 神图: 给个大神的链接:构造类斐波那契数列的矩阵快速幂 ...
- HDU 4565 So Easy(矩阵解公式)
So Easy [题目链接]So Easy [题目类型]矩阵解公式 &题解: 感觉这种类型的题都是一个套路,这题和hdu 2256就几乎是一样的. 所以最后2Xn就是答案 [时间复杂度]\(O ...
- 矩阵快速幂 HDU 4565 So Easy!(简单?才怪!)
题目链接 题意: 思路: 直接拿别人的图,自己写太麻烦了~ 然后就可以用矩阵快速幂套模板求递推式啦~ 另外: 这题想不到或者不会矩阵快速幂,根本没法做,还是2013年长沙邀请赛水题,也是2008年Go ...
- hdu 4565 So Easy!(矩阵+快速幂)
题目大意:就是给出a,b,n,m:让你求s(n); 解题思路:因为n很可能很大,所以一步一步的乘肯定会超时,我建议看代码之前,先看一下快速幂和矩阵快速幂,这样看起来就比较容易,这里我直接贴别人的推导, ...
- HDU 4565 So Easy!
So Easy! Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- 数学(矩阵乘法):HDU 4565 So Easy!
So Easy! Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- [ An Ac a Day ^_^ ] hdu 4565 数学推导+矩阵快速幂
从今天开始就有各站网络赛了 今天是ccpc全国赛的网络赛 希望一切顺利 可以去一次吉大 希望还能去一次大连 题意: 很明确是让你求Sn=[a+sqrt(b)^n]%m 思路: 一开始以为是水题 暴力了 ...
随机推荐
- Django使用网站图标
默认情况下,浏览器访问一个网站的时候,同时还会向服务器请求“/favicon.ico”这个URL,目的是获取网站的图标. 若是没有配置的话,Django就会返回一个404错误,并且浏览器接收到这个40 ...
- Spring 基础知识 - 依赖注入
所谓的依赖注入是指容器负责创建对象和维护对象间的依赖关系,而不是通过对象本身负责自己的创建和解决自己的依赖. 依赖注入主要目的是为了解耦,体现了一种“组合”的理念. 无论是xml配置.注解配置还是Ja ...
- AngularJS(五):表单及输入验证
本文也同步发表在我的公众号“我的天空” 表单基础 表单是HTML中很重要的一个部分,基本上我们的信息录入都依靠表单,接下来我们学习如何在AngularJS中使用表单,首先看以下示例代码: <bo ...
- RxJava四个基础接口
Publisher Subscriber Subscription Processor ----------------------------------- public interface Pub ...
- js 数组array es5-es6+ 新增方法函数
arr.forEach(function(item,index,arr){},this) 相当于普通的for循环,第一个回调参数,第二个this可以重定向[箭头函数则不生效] arr.map() 非 ...
- android 跨进程通讯 AIDL
跨进程如何通讯?两个进程无法直接通讯,通过Android系统底层间接通讯.基于service的aidl实现跨进程通讯. 什么叫AIDL? Android interface definition la ...
- Outlook 0x800CCC1A 错误
使用POP3帐户时,您可能在Outlook 2013/2016中看到以下错误.我在Exchange Server 2013环境中遇到此问题,在Windows 8.1上运行的Microsoft Outl ...
- python+selenium之多表单切换
在Web应用中经常会遇到fram/iframe表单嵌套页面的应用,WebDriver只能在一个页面上对元素识别与定位,对于fram/iframe表单内嵌套页面上的元素无法直接定位.这是需要通过swit ...
- 扒一扒IT大佬高考:马云数学1分考北大 李彦宏是状元
http://news.cnblogs.com/n/522622/ 高考今天正式拉开序幕,而像李彦宏.马云等 IT 大佬之前也都参加过高考,他们成绩又都是怎样的呢? 马化腾:放弃天文梦选择计算机 20 ...
- 【UWP】【新坑】Excel批量翻译工具(1)
嗯……具体思路是这样的.使用的时候,你导入一个excel,直观地选择某些区域,选择语言点击翻译,就可以对多个单元格进行批量翻译,并且支持多种不同的导出格式(excel副本.txt文件……) 1,多种翻 ...