Problem Description
  A sequence Sn is defined as:

Where a, b, n, m are positive integers.┌x┐is the ceil of x. For example, ┌3.14┐=4. You are to calculate Sn.
  You, a top coder, say: So easy! 
 
Input
  There are several test cases, each test case in one line contains four positive integers: a, b, n, m. Where 0< a, m < 215, (a-1)2< b < a2, 0 < b, n < 231.The input will finish with the end of file.
 
Output
  For each the case, output an integer Sn.
 
Sample Input
2 3 1 2013
2 3 2 2013
2 2 1 2013
 
Sample Output
4
14
4
 
 (a+sqrt(b))^n向上取整%M
令A(n)=(a+sqrt(b))^n,B(n)=(a-sqrt(b))^n
易得C(n)=A(n)+B(n)为整数
例如:2.3+0.7 ,由于(a-)^<b<a^,因此B(n)为小于1的小数
那么A(n)向上取整的结果就是C(n),题目也就是求C(n)%M

 #include <iostream>
#include <cstring>
#include <string>
#include <queue>
#include <set>
#include <cmath>
#include <cstdio>
#include <algorithm>
#include <cstdlib>
#define ll long long
#define max(x,y) (x>y?x:y)
#define min(x,y) (x<y?x:y)
#define gep(i,a,b) for(ll i=a;i<=b;i++)
using namespace std;
ll a,b,n,mod;
/*
矩阵乘法的相乘矩阵的行数、列数都要一样,这和行列式不同。
*/
struct ma{
ll m[][];
ma(){
memset(m,,sizeof(m));
}
};
ma qu(ma a,ma b,ll mod){
ma c;
gep(k,,){
gep(i,,){
if(a.m[i][k]){
gep(j,,){
c.m[i][j]=(c.m[i][j]+a.m[i][k]*b.m[k][j]%mod+mod)%mod;
}
}
}
}
return c;
}
ma quick_qu(ma a,ll b,ll mod){
ma c;
gep(i,,){
c.m[i][i]=1ll;
}
while(b){
if(b&) c=qu(c,a,mod);
b>>=;
a=qu(a,a,mod);
}
return c;
}
int main()
{
while(~scanf("%lld%lld%lld%lld",&a,&b,&n,&mod)){
if(n==){
printf("%lld\n",*a%mod);
continue;
}
ma c;
c.m[][]=*a;c.m[][]=b-a*a;
c.m[][]=;c.m[][]=;
ma d;
d.m[][]=*a*a*a+*a*b;d.m[][]=*a*a+*b;d.m[][]=*a;
ma e=quick_qu(c,n-,mod);
ma f;
f=qu(e,d,mod); //矩阵乘法不满足交换律,e,d位置不能换。
printf("%lld\n",f.m[][]);
}
return ;
}

hdu 4565的更多相关文章

  1. HDU 4565 So Easy!(矩阵)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4565 题意: 题意: #include <iostream>#include <cs ...

  2. HDU 4565 So Easy! 数学 + 矩阵 + 整体思路化简

    http://acm.hdu.edu.cn/showproblem.php?pid=4565 首先知道里面那个东西,是肯定有小数的,就是说小数部分是约不走的,(因为b限定了不是一个完全平方数). 因为 ...

  3. hdu 4565 So Easy! (共轭构造+矩阵快速幂)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4565 题目大意: 给出a,b,n,m,求出的值, 解题思路: 因为题目中出现了开根号,和向上取整后求 ...

  4. 【构造共轭函数+矩阵快速幂】HDU 4565 So Easy! (2013 长沙赛区邀请赛)

    [解题思路] 给一张神图,推理写的灰常明白了,关键是构造共轭函数,这一点实在是要有数学知识的理论基础,推出了递推式,接下来就是矩阵的快速幂了. 神图: 给个大神的链接:构造类斐波那契数列的矩阵快速幂 ...

  5. HDU 4565 So Easy(矩阵解公式)

    So Easy [题目链接]So Easy [题目类型]矩阵解公式 &题解: 感觉这种类型的题都是一个套路,这题和hdu 2256就几乎是一样的. 所以最后2Xn就是答案 [时间复杂度]\(O ...

  6. 矩阵快速幂 HDU 4565 So Easy!(简单?才怪!)

    题目链接 题意: 思路: 直接拿别人的图,自己写太麻烦了~ 然后就可以用矩阵快速幂套模板求递推式啦~ 另外: 这题想不到或者不会矩阵快速幂,根本没法做,还是2013年长沙邀请赛水题,也是2008年Go ...

  7. hdu 4565 So Easy!(矩阵+快速幂)

    题目大意:就是给出a,b,n,m:让你求s(n); 解题思路:因为n很可能很大,所以一步一步的乘肯定会超时,我建议看代码之前,先看一下快速幂和矩阵快速幂,这样看起来就比较容易,这里我直接贴别人的推导, ...

  8. HDU 4565 So Easy!

    So Easy! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  9. 数学(矩阵乘法):HDU 4565 So Easy!

    So Easy! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  10. [ An Ac a Day ^_^ ] hdu 4565 数学推导+矩阵快速幂

    从今天开始就有各站网络赛了 今天是ccpc全国赛的网络赛 希望一切顺利 可以去一次吉大 希望还能去一次大连 题意: 很明确是让你求Sn=[a+sqrt(b)^n]%m 思路: 一开始以为是水题 暴力了 ...

随机推荐

  1. 《深入理解java虚拟机》笔记(5)垃圾回收算法及垃圾收集器

    一.标记-清除算法 算法:分为标记和清除两个阶段,首先标记出所有需要回收的对象,再对标记对象进行回收. 不足之处:效率不高,会产生大量不连续内存碎片,导致下次分配较大内存时,若内存不足不得不触发垃圾回 ...

  2. 举例实用详解sc.textFile()和wholeTextFiles()

    谈清楚区别,说明白道理,从案例开始: 1 数据准备 用hdfs存放数据,且结合的hue上传准备的数据,我的hue截图: 每个文件下的数据: 以上是3个文件的数据,每一行用英文下的空格隔开: 2 测试 ...

  3. 总结一下WindowListener的用法

    记录一下便于自己查看 1.WindowListener java.awt.event 接口 WindowListener public interface WindowListener extends ...

  4. ThreadLocal(关于struts2的ThreadLocal,实际上Jdk1.2就有了)

    ThreadLocal是通过在不同线程中操作变量的副本,来达到线程安全的目的,是用空间资源换时间资源的方式.今天在看struts2源码的时候,发现ActionContext中,就持有一个静态的Thre ...

  5. TCP的三次握手以及TCP状态转换图详解

    今天来讨论一下TCP的三次握手以及TCP的状态转换图.首先发一个三次握手的流程图如下: 圖 2.4-3.三向交握之封包连接模式A:封包发起当用戶端想要对服务器端发起连接时,就必須要送出一個要求连线的封 ...

  6. BaseAdapter获取View之三重境界

    在BaseAdapter获取View之前,BaseAdapter需要与数据源相关联. 可以使用构造方法: private List<ItemBean> baseListItems; pri ...

  7. gd调试命令,gdb调试core文件

    使用 gcc -g test.c -o test.out 编译程序,只有加-g参数才支持gdb调试: 然后 gdb ./test.out 运行可执行文件,进入gdb调试模式(gdb),在括号后面的输入 ...

  8. Ajax经典的面试题

    1.什么是AJAX,为什么要使用Ajax(请谈一下你对Ajax的认识)什么是ajax:AJAX是“Asynchronous JavaScript and XML”的缩写.他是指一种创建交互式网页应用的 ...

  9. Ubuntu18.04如何从英文界面更改为中文界面

    本文介绍如何将Ubuntu18.04安装后的英文界面,更改为中文界面,即系统语言由英文改为简体中文.注意,与安装中文输入法不同,两者也没有冲突. 首先进入设置(Setting),选择区域和语言(Reg ...

  10. Bootstrap历练实例:导航内的下拉菜单

    <!DOCTYPE html><html><head><meta http-equiv="Content-Type" content=&q ...