题意:

给出一棵树,每个顶点上有个颜色\(c_i\)。

有两种操作:

  • C a b c 将\(a \to b\)的路径所有顶点上的颜色变为c
  • Q a b 查询\(a \to b\)的路径上的颜色段数,连续相同颜色视为一段

分析:

首先树链剖分,下面考虑线段树部分:

我们维护一个区间的左端点的颜色和右断点的颜色以及该区间的颜色段数,在加一个颜色覆盖标记。

pushup的时候,如果左区间右端点颜色和右区间左端点颜色相同,那么这段颜色可以合并,合并区间的颜色段数为左右子区间颜色段数之和减1;

否则,答案为左右子区间颜色段数之和。

本题的特殊性在于区间合并的顺序性,我们是自底向上将两个顶点到\(LCA\)的。因为在每条重链上,顶点在线段树上的编号是从上到下递增的。所以每个子查询得到的区间信息也是从上到下的。我们可以将所得区间左右翻转(具体就是交换区间左右端点颜色,颜色段数不会变)一下,再合并最终得到整个查询区间。

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; const int maxn = 100000 + 10;
const int maxnode = maxn * 4; struct Edge
{
int v, nxt;
Edge() {}
Edge(int v, int nxt):v(v), nxt(nxt) {}
}; int n, m, a[maxn]; int ecnt, head[maxn];
Edge edges[maxn * 2]; void AddEdge(int u, int v) {
edges[ecnt] = Edge(v, head[u]);
head[u] = ecnt++;
edges[ecnt] = Edge(u, head[v]);
head[v] = ecnt++;
} int fa[maxn], dep[maxn], sz[maxn], son[maxn];
int tot, top[maxn], id[maxn], pos[maxn]; void dfs(int u) {
sz[u] = 1; son[u] = 0;
for(int i = head[u]; ~i; i = edges[i].nxt) {
int v = edges[i].v;
if(v == fa[u]) continue;
dep[v] = dep[u] + 1;
fa[v] = u;
dfs(v);
sz[u] += sz[v];
if(sz[v] > sz[son[u]]) son[u] = v;
}
} void dfs2(int u, int tp) {
id[u] = ++tot;
pos[tot] = u;
top[u] = tp;
if(!son[u]) return;
dfs2(son[u], tp);
for(int i = head[u]; ~i; i = edges[i].nxt) {
int v = edges[i].v;
if(v == fa[u] || v == son[u]) continue;
dfs2(v, v);
}
} struct Node
{
int lcol, rcol, cntv; Node() {} Node(int l, int r, int c): lcol(l), rcol(r), cntv(c) {}
}; void reverse(Node& t) { swap(t.lcol, t.rcol); } Node operator + (const Node& a, const Node& b) {
if(!a.cntv) return b; if(!b.cntv) return a;
return Node(a.lcol, b.rcol, a.cntv + b.cntv - 1 + (a.rcol != b.lcol));
} int setv[maxnode];
Node t[maxnode]; void build(int o, int L, int R) {
setv[o] = -1;
if(L == R) {
t[o].cntv = 1;
t[o].lcol = t[o].rcol = a[pos[L]];
return;
}
int M = (L + R) / 2;
build(o<<1, L, M);
build(o<<1|1, M+1, R);
t[o] = t[o<<1] + t[o<<1|1];
} void pushdown(int o) {
if(setv[o] != -1) {
setv[o<<1] = setv[o<<1|1] = setv[o];
t[o<<1].cntv = t[o<<1|1].cntv = 1;
t[o<<1].lcol = t[o<<1].rcol = t[o<<1|1].lcol = t[o<<1|1].rcol = setv[o];
setv[o] = -1;
}
} void update(int o, int L, int R, int qL, int qR, int v) {
if(qL <= L && R <= qR) {
t[o].lcol = t[o].rcol = setv[o] = v;
t[o].cntv = 1;
return;
}
pushdown(o);
int M = (L + R) / 2;
if(qL <= M) update(o<<1, L, M, qL, qR, v);
if(qR > M) update(o<<1|1, M+1, R, qL, qR, v);
t[o] = t[o<<1] + t[o<<1|1];
} void UPDATE(int u, int v, int val) {
int t1 = top[u], t2 = top[v];
while(t1 != t2) {
if(dep[t1] < dep[t2]) { swap(u, v); swap(t1, t2); }
update(1, 1, n, id[t1], id[u], val);
u = fa[t1]; t1 = top[u];
}
if(dep[u] > dep[v]) swap(u, v);
update(1, 1, n, id[u], id[v], val);
} Node query(int o, int L, int R, int qL, int qR) {
Node ans(0, 0, 0);
if(qL <= L && R <= qR) return t[o];
pushdown(o);
int M = (L + R) / 2;
if(qL <= M) ans = ans + query(o<<1, L, M, qL, qR);
if(qR > M) ans = ans + query(o<<1|1, M+1, R, qL, qR);
return ans;
} int QUERY(int u, int v) {
Node q1(0, 0, 0), q2(0, 0, 0), tmp;
int t1 = top[u], t2 = top[v];
while(t1 != t2) {
if(dep[t1] > dep[t2]) {
tmp = query(1, 1, n, id[t1], id[u]);
reverse(tmp);
q1 = q1 + tmp;
u = fa[t1]; t1 = top[u];
} else {
tmp = query(1, 1, n, id[t2], id[v]);
reverse(tmp);
q2 = q2 + tmp;
v = fa[t2]; t2 = top[v];
}
}
if(dep[u] > dep[v]) {
tmp = query(1, 1, n, id[v], id[u]);
reverse(tmp);
q1 = q1 + tmp;
} else {
tmp = query(1, 1, n, id[u], id[v]);
reverse(tmp);
q2 = q2 + tmp;
} reverse(q2);
q1 = q1 + q2;
return q1.cntv;
} int main()
{
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; i++) scanf("%d", a + i); ecnt = 0;
memset(head, -1, sizeof(head));
for(int i = 1; i < n; i++) {
int u, v; scanf("%d%d", &u, &v);
AddEdge(u, v);
} dfs(1);
tot = 0;
dfs2(1, 1); build(1, 1, n); char cmd[5];
int a, b, c;
while(m--) {
scanf("%s", cmd);
scanf("%d%d", &a, &b);
if(cmd[0] == 'C') {
scanf("%d", &c);
UPDATE(a, b, c);
} else {
printf("%d\n", QUERY(a, b));
}
} return 0;
}

BZOJ 2243 染色 树链剖分的更多相关文章

  1. BZOJ 2243 染色 | 树链剖分模板题进阶版

    BZOJ 2243 染色 | 树链剖分模板题进阶版 这道题呢~就是个带区间修改的树链剖分~ 如何区间修改?跟树链剖分的区间询问一个道理,再加上线段树的区间修改就好了. 这道题要注意的是,无论是线段树上 ...

  2. BZOJ - 2243 染色 (树链剖分+线段树+区间合并)

    题目链接 线段树维护区间连续段个数即可.设lc为区间左端点颜色,rc为区间右端点颜色,则合并两区间的时候,如果左区间右端点和右区间左端点颜色相同,则连续段个数-1. 在树链上的区间合并可以定义一个结构 ...

  3. hysbz 2243 染色(树链剖分)

    题目链接:hysbz 2243 染色 题目大意:略. 解题思路:树链剖分+线段树的区间合并,可是区间合并比較简单,节点仅仅要记录左右端点的颜色就可以. #include <cstdio> ...

  4. HYSBZ - 2243 染色 (树链剖分+线段树)

    题意:树上每个结点有自己的颜色,支持两种操作:1.将u到v路径上的点颜色修改为c; 2.求u到v路径上有多少段不同的颜色. 分析:树剖之后用线段树维护区间颜色段数.区间查询区间修改.线段树结点中维护的 ...

  5. BZOJ 2243: [SDOI2011]染色 [树链剖分]

    2243: [SDOI2011]染色 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 6651  Solved: 2432[Submit][Status ...

  6. Bzoj 2243: [SDOI2011]染色 树链剖分,LCT,动态树

    2243: [SDOI2011]染色 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 5020  Solved: 1872[Submit][Status ...

  7. BZOJ 2243: [SDOI2011]染色 树链剖分 倍增lca 线段树

    2243: [SDOI2011]染色 Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pr ...

  8. BZOJ 2243: [SDOI2011]染色 树链剖分+线段树区间合并

    2243: [SDOI2011]染色 Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的颜色段数 ...

  9. BZOJ 2243: [SDOI2011]染色 (树链剖分+线段树合并)

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2243 树链剖分的点剖分+线段树.漏了一个小地方,调了一下午...... 还是要细心啊! 结 ...

随机推荐

  1. C#oracle还原imp实例

    C#来做oracle还原,调用oracle自带函数imp.exe时,需要注意的是:1.imp.exe 中fromuser 和touser两个关键字: fromuser与exp.exe中的owner对应 ...

  2. IntelJ IDEA创建简单Java工程

    1.  打开IDEA J 2017开发工具,如下图: 2.点击“Create New Project”,将打开以下图: 3.选择 “Java”,选择“Next”,打开下图: 4.“Create pro ...

  3. 零基础逆向工程19_PE结构03_代码节空白区添加代码_shellcode

    1.获取MessageBox地址,构造ShellCode代码 三种获取方法,参考文章末的一篇帖子. E8 E9计算公式 call 的硬编码:E8 00 00 00 00 jmp 的硬编码:E9 00 ...

  4. arcgis jsapi接口入门系列(0):总览

    开发环境: arcgis jsapi版本4.9 由于我们这套代码是基于vue,webpack开发的,会有少数vue代码,但总体不影响 里面还有些我们公司的js库和html css,给出的代码不能百分百 ...

  5. cpu 满载测试软件

    for i in `seq 1 $(cat /proc/cpuinfo |grep "physical id" |wc -l)`; do dd if=/dev/zero of=/d ...

  6. git remote add 用法

    前一阵子,对于git remote add 的内容一直调错,现在明确一下: 这里是gitStack的用法:git remote add gitServerName http://ip/name(这里没 ...

  7. ArcSDE 10.1 For Windows 创建空间数据库与常见错误_SQL Server

    本文是2013年时候参加ESRI竞赛,创建ArcSDE 10.1 for SQL Server时候出问题了,因此写了该文档. 由于一直忙于学习,忘了发布.今天一师弟也遇到同样问题,为此我觉得可能有不少 ...

  8. python3操作excel01(对excel的基础操作)

    #!/usr/bin/env python# -*- coding:UTF-8 -*- import requestsfrom bs4 import BeautifulSoupfrom bs4 imp ...

  9. SqlServer 填充因子的说明

    CREATE NONCLUSTERED INDEX IX_d_name ON department(d_name) with fillfactor=30 使用 fill factor 选项可以指定 M ...

  10. 转 winfrom如何通过http来进行通信,并且通过传递json格式的数据可接受json格式的数据

    string username = this.textBox1.Text; string password = this.textBox2.Text; string AA = HttpUtility. ...