BZOJ 2243 染色 树链剖分
题意:
给出一棵树,每个顶点上有个颜色\(c_i\)。
有两种操作:
- C a b c 将\(a \to b\)的路径所有顶点上的颜色变为c
- Q a b 查询\(a \to b\)的路径上的颜色段数,连续相同颜色视为一段
分析:
首先树链剖分,下面考虑线段树部分:
我们维护一个区间的左端点的颜色和右断点的颜色以及该区间的颜色段数,在加一个颜色覆盖标记。
在pushup
的时候,如果左区间右端点颜色和右区间左端点颜色相同,那么这段颜色可以合并,合并区间的颜色段数为左右子区间颜色段数之和减1;
否则,答案为左右子区间颜色段数之和。
本题的特殊性在于区间合并的顺序性,我们是自底向上将两个顶点跳到\(LCA\)的。因为在每条重链上,顶点在线段树上的编号是从上到下递增的。所以每个子查询得到的区间信息也是从上到下的。我们可以将所得区间左右翻转(具体就是交换区间左右端点颜色,颜色段数不会变)一下,再合并最终得到整个查询区间。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 100000 + 10;
const int maxnode = maxn * 4;
struct Edge
{
int v, nxt;
Edge() {}
Edge(int v, int nxt):v(v), nxt(nxt) {}
};
int n, m, a[maxn];
int ecnt, head[maxn];
Edge edges[maxn * 2];
void AddEdge(int u, int v) {
edges[ecnt] = Edge(v, head[u]);
head[u] = ecnt++;
edges[ecnt] = Edge(u, head[v]);
head[v] = ecnt++;
}
int fa[maxn], dep[maxn], sz[maxn], son[maxn];
int tot, top[maxn], id[maxn], pos[maxn];
void dfs(int u) {
sz[u] = 1; son[u] = 0;
for(int i = head[u]; ~i; i = edges[i].nxt) {
int v = edges[i].v;
if(v == fa[u]) continue;
dep[v] = dep[u] + 1;
fa[v] = u;
dfs(v);
sz[u] += sz[v];
if(sz[v] > sz[son[u]]) son[u] = v;
}
}
void dfs2(int u, int tp) {
id[u] = ++tot;
pos[tot] = u;
top[u] = tp;
if(!son[u]) return;
dfs2(son[u], tp);
for(int i = head[u]; ~i; i = edges[i].nxt) {
int v = edges[i].v;
if(v == fa[u] || v == son[u]) continue;
dfs2(v, v);
}
}
struct Node
{
int lcol, rcol, cntv;
Node() {}
Node(int l, int r, int c): lcol(l), rcol(r), cntv(c) {}
};
void reverse(Node& t) { swap(t.lcol, t.rcol); }
Node operator + (const Node& a, const Node& b) {
if(!a.cntv) return b; if(!b.cntv) return a;
return Node(a.lcol, b.rcol, a.cntv + b.cntv - 1 + (a.rcol != b.lcol));
}
int setv[maxnode];
Node t[maxnode];
void build(int o, int L, int R) {
setv[o] = -1;
if(L == R) {
t[o].cntv = 1;
t[o].lcol = t[o].rcol = a[pos[L]];
return;
}
int M = (L + R) / 2;
build(o<<1, L, M);
build(o<<1|1, M+1, R);
t[o] = t[o<<1] + t[o<<1|1];
}
void pushdown(int o) {
if(setv[o] != -1) {
setv[o<<1] = setv[o<<1|1] = setv[o];
t[o<<1].cntv = t[o<<1|1].cntv = 1;
t[o<<1].lcol = t[o<<1].rcol = t[o<<1|1].lcol = t[o<<1|1].rcol = setv[o];
setv[o] = -1;
}
}
void update(int o, int L, int R, int qL, int qR, int v) {
if(qL <= L && R <= qR) {
t[o].lcol = t[o].rcol = setv[o] = v;
t[o].cntv = 1;
return;
}
pushdown(o);
int M = (L + R) / 2;
if(qL <= M) update(o<<1, L, M, qL, qR, v);
if(qR > M) update(o<<1|1, M+1, R, qL, qR, v);
t[o] = t[o<<1] + t[o<<1|1];
}
void UPDATE(int u, int v, int val) {
int t1 = top[u], t2 = top[v];
while(t1 != t2) {
if(dep[t1] < dep[t2]) { swap(u, v); swap(t1, t2); }
update(1, 1, n, id[t1], id[u], val);
u = fa[t1]; t1 = top[u];
}
if(dep[u] > dep[v]) swap(u, v);
update(1, 1, n, id[u], id[v], val);
}
Node query(int o, int L, int R, int qL, int qR) {
Node ans(0, 0, 0);
if(qL <= L && R <= qR) return t[o];
pushdown(o);
int M = (L + R) / 2;
if(qL <= M) ans = ans + query(o<<1, L, M, qL, qR);
if(qR > M) ans = ans + query(o<<1|1, M+1, R, qL, qR);
return ans;
}
int QUERY(int u, int v) {
Node q1(0, 0, 0), q2(0, 0, 0), tmp;
int t1 = top[u], t2 = top[v];
while(t1 != t2) {
if(dep[t1] > dep[t2]) {
tmp = query(1, 1, n, id[t1], id[u]);
reverse(tmp);
q1 = q1 + tmp;
u = fa[t1]; t1 = top[u];
} else {
tmp = query(1, 1, n, id[t2], id[v]);
reverse(tmp);
q2 = q2 + tmp;
v = fa[t2]; t2 = top[v];
}
}
if(dep[u] > dep[v]) {
tmp = query(1, 1, n, id[v], id[u]);
reverse(tmp);
q1 = q1 + tmp;
} else {
tmp = query(1, 1, n, id[u], id[v]);
reverse(tmp);
q2 = q2 + tmp;
}
reverse(q2);
q1 = q1 + q2;
return q1.cntv;
}
int main()
{
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; i++) scanf("%d", a + i);
ecnt = 0;
memset(head, -1, sizeof(head));
for(int i = 1; i < n; i++) {
int u, v; scanf("%d%d", &u, &v);
AddEdge(u, v);
}
dfs(1);
tot = 0;
dfs2(1, 1);
build(1, 1, n);
char cmd[5];
int a, b, c;
while(m--) {
scanf("%s", cmd);
scanf("%d%d", &a, &b);
if(cmd[0] == 'C') {
scanf("%d", &c);
UPDATE(a, b, c);
} else {
printf("%d\n", QUERY(a, b));
}
}
return 0;
}
BZOJ 2243 染色 树链剖分的更多相关文章
- BZOJ 2243 染色 | 树链剖分模板题进阶版
BZOJ 2243 染色 | 树链剖分模板题进阶版 这道题呢~就是个带区间修改的树链剖分~ 如何区间修改?跟树链剖分的区间询问一个道理,再加上线段树的区间修改就好了. 这道题要注意的是,无论是线段树上 ...
- BZOJ - 2243 染色 (树链剖分+线段树+区间合并)
题目链接 线段树维护区间连续段个数即可.设lc为区间左端点颜色,rc为区间右端点颜色,则合并两区间的时候,如果左区间右端点和右区间左端点颜色相同,则连续段个数-1. 在树链上的区间合并可以定义一个结构 ...
- hysbz 2243 染色(树链剖分)
题目链接:hysbz 2243 染色 题目大意:略. 解题思路:树链剖分+线段树的区间合并,可是区间合并比較简单,节点仅仅要记录左右端点的颜色就可以. #include <cstdio> ...
- HYSBZ - 2243 染色 (树链剖分+线段树)
题意:树上每个结点有自己的颜色,支持两种操作:1.将u到v路径上的点颜色修改为c; 2.求u到v路径上有多少段不同的颜色. 分析:树剖之后用线段树维护区间颜色段数.区间查询区间修改.线段树结点中维护的 ...
- BZOJ 2243: [SDOI2011]染色 [树链剖分]
2243: [SDOI2011]染色 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 6651 Solved: 2432[Submit][Status ...
- Bzoj 2243: [SDOI2011]染色 树链剖分,LCT,动态树
2243: [SDOI2011]染色 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 5020 Solved: 1872[Submit][Status ...
- BZOJ 2243: [SDOI2011]染色 树链剖分 倍增lca 线段树
2243: [SDOI2011]染色 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pr ...
- BZOJ 2243: [SDOI2011]染色 树链剖分+线段树区间合并
2243: [SDOI2011]染色 Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的颜色段数 ...
- BZOJ 2243: [SDOI2011]染色 (树链剖分+线段树合并)
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2243 树链剖分的点剖分+线段树.漏了一个小地方,调了一下午...... 还是要细心啊! 结 ...
随机推荐
- C#字符串变量使用
string由于是引用类型,所以,声明的字符串变量会存储到堆上,而且该变量是不可变的,一旦初始化了该变量,该内存区域中存储的内容将不能更改.在对字符串操作时,是在堆上创建了一个新的字符串变量,并将新的 ...
- jstl表达式的应用的条件
在el表达式中,有时我们要写for循环,这时我们要写 <c:forEach items="${list}" var="news" > </c: ...
- is 和 == 区别 编码的问题 id()函数
一丶is 和 == 的区别 == 比较的是值 is 比较的是内存地址 #字符串 a = "abc" b = "abc" print(a == b) print( ...
- Kendo 单页面应用(一)概述
Kendo 单页面应用(一)概述 Kendo 单页面应用(Single-Page Application,缩写为 SPA)定义了一组类用于简化 Web 应用(Rich Client)开发,最常见的单页 ...
- 准备Kendo UI 开发环境
准备 首先你需要从 Telerik 网站下载试用版开发包,注意需要注册后才能下载. 下载后直接解压后包含下面几个文件和目录: ./examples – 示例. /js – minified 化后的 J ...
- Linux命令-4类
一.系统管理与维护 1. pwd:print working directory 打印工作目录 2. cd: change directory 改变或进入路径 ● c ...
- Ubuntu批量修改权限
Ubuntu中有两个修改命令可以用到,「change mode」&「change owner」 即chmod以及chown,其中可以用递归参数-R来实现更改所有子文件和子目录的权限. 1.利用 ...
- 对fgets末尾'\0'的处理
之所以要对fgets自动添加的字符进行处理的原因之一是:当你想比较输入的字符时,你会发现输入的字符和源码用来进行对比的字符一模一样,但是使用strcmp比较时就是不一样,原因就是fgets对输入字符添 ...
- thinkphp 的事务回滚处理 和 原始PHP的事务回滚实例
1. 要程序里面支持事务,首先连接的数据库和数据表必须支持事务 mysql 为例: 数据库InnoDB支持 transactions 数据表支持事务:InnoDB 支持transaction ...
- [Tracking] KCF + KalmanFilter目标跟踪
基于KCF和MobileNet V2以及KalmanFilter的摄像头监测系统 简介 这是一次作业.Tracking这一块落后Detection很多年了,一般认为Detection做好了,那么只要能 ...