使用Tensorflow和VGG16预训模型进行预测

from:https://zhuanlan.zhihu.com/p/28997549
 

fast.ai的入门教程中使用了kaggle: dogs vs cats作为例子来让大家入门Computer Vision。不过并未应用到最近很火的Tensorflow。Keras虽然可以调用Tensorflow作为backend,不过既然可以少走一层直接走Tensorflow,那秉着学习的想法,就直接用Tensorflow来一下把。

听说工程上普遍的做法并不是从头开始训练模型,而是直接用已经训练完的模型稍加改动(这个过程叫finetune)来达到目的。那么这里就需要用Tensorflow还原出VGG16的模型。这里借鉴了frossard的python代码和他转化的权重。架构具体如下:(cs231n有更详细的介绍)

INPUT: [224x224x3]        memory:  224*224*3=150K   weights: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M weights: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M weights: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K weights: 0
CONV3-128: [112x112x128] memory: 112*112*128=1.6M weights: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M weights: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K weights: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K weights: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K weights: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K weights: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K weights: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K weights: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K weights: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K weights: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K weights: 0
CONV3-512: [14x14x512] memory: 14*14*512=100K weights: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K weights: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K weights: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K weights: 0
FC: [1x1x4096] memory: 4096 weights: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 weights: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 weights: 4096*1000 = 4,096,000

具体实现移步VGG16。这里要注意的一点就是最后的输出是不需要经过Relu的。

预测猫和狗不能照搬这个架构,因为VGG16是用来预测ImageNet上1000个不同种类的。用来预测猫和狗两种类别,需要在这个架构的基础上再加一层FC把1000转化成2个。(也可以把最后一层替换掉,直接输出成2个)。我还在VGG16之后多加了一层BN,原来VGG16的时候并不存在BN。我也并没有在每个CONV后面加,因为不想算...

FC的输出在训练的时候使用Cross Entropy损失函数,预测的时候使用Softmax。这样就可以识别出给定图片是猫还是狗了。具体代码移步cats_model.py

我们来看一下效果如何。完整的:Jupyter Notebook

未经过Finetune直接运行VGG16改模型(加上了最后一层FC)的结果(预测非常不准,因为最后一层的权重都是随机的)。这么做的目的是看一下模型是否能运行,顺便看看能蒙对几个。

经过一次迭代,准确率就达到95%了(重复过几次,这次并不是最高的)。

再看一下同样的图片预测结果,似乎准确了很多。

Final Thoughts

图像识别非常有趣,是一个非常有挑战的领域。

迁移学习——使用Tensorflow和VGG16预训模型进行预测的更多相关文章

  1. 在imagenet预训模型上进行finetune

    所谓fine tune就是用别人训练好的模型,加上我们自己的数据,来训练新的模型.fine tune相当于使用别人的模型的前几层,来提取浅层特征,然后在最后再落入我们自己的分类中. fine tune ...

  2. 第二十四节,TensorFlow下slim库函数的使用以及使用VGG网络进行预训练、迁移学习(附代码)

    在介绍这一节之前,需要你对slim模型库有一些基本了解,具体可以参考第二十二节,TensorFlow中的图片分类模型库slim的使用.数据集处理,这一节我们会详细介绍slim模型库下面的一些函数的使用 ...

  3. ML.NET 示例:图像分类模型训练-首选API(基于原生TensorFlow迁移学习)

    ML.NET 版本 API 类型 状态 应用程序类型 数据类型 场景 机器学习任务 算法 Microsoft.ML 1.5.0 动态API 最新 控制台应用程序和Web应用程序 图片文件 图像分类 基 ...

  4. TensorFlow从1到2(九)迁移学习

    迁移学习基本概念 迁移学习是这两年比较火的一个话题,主要原因是在当前的机器学习中,样本数据的获取是成本最高的一块.而迁移学习可以有效的把原有的学习经验(对于模型就是模型本身及其训练好的权重值)带入到新 ...

  5. 迁移学习、fine-tune和局部参数恢复

    参考:迁移学习——Fine-tune 一.迁移学习 就是把已训练好的模型参数迁移到新的模型来帮助新模型训练. 模型的训练与预测: 深度学习的模型可以划分为 训练 和 预测 两个阶段. 训练 分为两种策 ...

  6. Gluon炼丹(Kaggle 120种狗分类,迁移学习加双模型融合)

    这是在kaggle上的一个练习比赛,使用的是ImageNet数据集的子集. 注意,mxnet版本要高于0.12.1b2017112. 下载数据集. train.zip test.zip labels ...

  7. NLP与深度学习(五)BERT预训练模型

    1. BERT简介 Transformer架构的出现,是NLP界的一个重要的里程碑.它激发了很多基于此架构的模型,其中一个非常重要的模型就是BERT. BERT的全称是Bidirectional En ...

  8. 用tensorflow迁移学习猫狗分类

    笔者这几天在跟着莫烦学习TensorFlow,正好到迁移学习(至于什么是迁移学习,看这篇),莫烦老师做的是预测猫和老虎尺寸大小的学习.作为一个有为的学生,笔者当然不能再预测猫啊狗啊的大小啦,正好之前正 ...

  9. 『TensorFlow』迁移学习

    完全版见github:TransforLearning 零.迁移学习 将一个领域的已经成熟的知识应用到其他的场景中称为迁移学习.用神经网络的角度来表述,就是一层层网络中每个节点的权重从一个训练好的网络 ...

随机推荐

  1. python:字符串的连接

    python中有很多字符串连接方式,今天在写代码,顺便总结一下: 最原始的字符串连接方式:str1 + str2 python 新字符串连接语法:str1, str2 奇怪的字符串方式:str1 st ...

  2. SVN客户端忽略无关文件

    修改前请先备份文件 ~/.subversion/config. 1,打开Terminal,输入命令: $ open ~/.subversion/config   2,在打开的文件中寻找:`global ...

  3. DevOps企业实践与架构

    原文地址:http://www.sohu.com/a/112351816_355140 什么是DevOps及其误区 DevOps概念从2009年提出已有8个年头.可是在8年前的那个时候,为什么DevO ...

  4. RobotFramework-Selenium2Library--关键字

    Selenium2Library用户关键字 *** Settings *** Library Selenium2Library *** Keywords *** Checkbox应该不被选择 [Arg ...

  5. uva 11404 dp

    UVA 11404 - Palindromic Subsequence 求给定字符串的最长回文子序列,长度一样的输出字典序最小的. 对于 [l, r] 区间的最长回文串.他可能是[l+1, r] 和[ ...

  6. CSS -- 未解之疑

    @.css那些事儿 -- 第9章 反馈表单 自己编写了CSS,可是红框中的横线比下面的要粗.对比作者的代码,发现可能与上面标题h3的height和line-height有关,但是不知道具体是为什么? ...

  7. node.js的http模块的基础 学到的东西

    node.js的http模块的基础 学到的东西 其中客户端:我们在node.js中如果要请求服务端中的js或者其他脚本的话要使用http.request()方法他会返回http.ClientReque ...

  8. iOS 可选择的购物车

    最近看了淘宝的购物车,于是做了一个可选择的购物车模板. 如果有好的建议请提出,带我日后更新.

  9. python 基础 6.1 异常处理方法

      一. Excepthion 异常类    Excepthion 是所有的异常基础类(),对于python 的标准异常,我们列出如下,以做参考:   异常名称                     ...

  10. 1930: [Shoi2003]pacman 吃豆豆

    1930: [Shoi2003]pacman 吃豆豆 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1969  Solved: 461[Submit][ ...