(2016天津压轴题)设函数$f(x)=(x-1)^3-ax-b,x\in R$, 其中$a,b\in R$
(1)求$f(x)$的单调区间.
(2)若$f(x)$存在极值点$x_0$,且$f(x_1)=f(x_0),$其中$x_1\ne x_0$,求证:$x_1+2x_0=3$;
(3)设$a>0$,函数$g(x)=|f(x)|,$求证:$g(x)$在区间$[0,2]$上的最大值不小于$\dfrac{1}{4}$


分析:
(1)
当$a\le0,f(x)$在$(-\infty,+\infty)$单调递增.
当$a>0,f(x)$在$\left(-\infty,-\dfrac{\sqrt{3a}}{3}+1\right)\nearrow,\left(-\dfrac{\sqrt{3a}}{3}+1,\dfrac{\sqrt{3a}{3}}+1\right)\searrow,\left(\dfrac{\sqrt{3a}}{3}+1,+\infty\right)\nearrow$
(2)由于$x_0,$是$f(x)$的极值点,故由(1)知$a>0$,且$a=3(x_0-1)^2$,由题意$f(x)=f(x_0)$有且仅有两根$x_0,x_1$,容易验证$f(3-2x_0)-f(x_0)=0$

故$3-2x_0=x_0(\textbf{舍去,此时}a=0) $或$3-2x_0=x_1$即$2x_0+x_1=3$

(3)记$M(a,b)=\max\limits_{a>0,b\in R}|f(x)|$则
$$\begin{cases}
M(a,b)&\ge|f(0)|=|-1-b|\\
M(a,b)&\ge|f(\dfrac{1}{2})|=|-\dfrac{1}{8}-\dfrac{1}{2}a-b|\\
M(a,b)&\ge|f(\dfrac{3}{2})|=|\dfrac{1}{8}-\dfrac{3}{2}a-b|\\
M(a,b)&\ge|f(2)|=|1-2a-b|\\
\end{cases}$$
则\begin{align*}
6M(a,b)&\ge|f(0)|+2|f(\dfrac{1}{2})|+2|f(\dfrac{3}{2})|+|f(2)|\\
&=|-1-b|+2|-\dfrac{1}{8}-\dfrac{1}{2}a-b|+2|\dfrac{1}{8}-\dfrac{3}{2}a-b|+|1-2a-b|\\
&=|-1-b-2(-\dfrac{1}{8}-\dfrac{1}{2}a-b)+2(\dfrac{1}{8}-\dfrac{3}{2}a-b)-(1-2a-b)|\\
&=\dfrac{3}{2}
\end{align*}
故$M(a,b)\ge \dfrac{1}{4}$,当$f(x)=(x-1)^3-\dfrac{3}{4}(x-1)$时取到等号.

注:通过画图,两条直线“夹紧”曲线,得到0,1/2,3/2或者1/2,3/2,2都可以。

$3M\ge |f(0)|+\dfrac{3}{2}|f(\dfrac{1}{2})|+\dfrac{1}{2}|f(\dfrac{3}{2})|$

或者$3M\ge \dfrac{1}{2}|f(\dfrac{1}{2})|+\dfrac{3}{2}|f(\dfrac{3}{2})|+|f(2)|$

两者并起来写就是$6M(a,b)\ge | f(0)|+2|f(\dfrac{1}{2})|+2|f(\dfrac{3}{2})|+|f(2)|$

MT【259】2016天津压轴题之最佳逼近的更多相关文章

  1. MT【256】2016四川高考解答压轴题

    (2016四川高考数学解答压轴题)设函数$f(x)=ax^2-a-\ln x,a\in R$. 1)讨论$f(x)$的单调性;2)确定$a$的所有可能值,使得$f(x)>\dfrac{1}{x} ...

  2. MT【119】关于恒成立的一道压轴题

    分析:处理恒成立问题,一般先代特殊值缩小范围.令x=0,则f(a)<f(0),容易知a<0. 排除答案C.容易理解a趋向于0时候,是可以的,排除D.在剩余的A,B选项里,显然偏向于A.因为 ...

  3. MT【273】2014新课标压轴题之$\ln2$的估计

    已知函数$f(x)=e^x-e^{-x}-2x$(1)讨论$f(x)$的单调性;(2)设$g(x)=f(2x)-4bf(x),$当$x>0$时,$g(x)>0,$求$b$的最大值;(3)已 ...

  4. MT【75】考察高斯函数的一道高考压轴题

    解答:答案1,3,4. 这里关于高斯函数$[x]$的一个不等式是需要知道的$x-1<[x]\le x$,具体的:

  5. 清北 Noip 2016 考前刷题冲刺济南班

    2016 10 29 周六 第一天 %%%,%ZHX大神 上午,60分, 下午,爆零orz 2016 10 30 周天 第二天 炒鸡倒霉的一天 %%%,%ZHX大神 据大神第一天的题最简单. 上午,和 ...

  6. 网络流板子/费用流板子 2018南京I题+2016青岛G题

    2018南京I题: dinic,链式前向星,数组队列,当前弧优化,不memset全部数组,抛弃满流点,bfs只找一条增广路,每次多路增广 #include <bits/stdc++.h> ...

  7. 腾讯2016校招编程题【PHP实现】

    2016腾讯春招的编程题 话不多说,直接上题!!! 给定一个字符串s,你可以从中删除一些字符,使得剩下的串是一个回文串.如何删除才能使得回文串最长呢?输出需要删除的字符个数 . 这道题是以回文为载体, ...

  8. 【CTF WEB】ISCC 2016 web 2题记录

      偶然看到的比赛,我等渣渣跟风做两题,剩下的题目工作太忙没有时间继续做. 第1题 sql注入: 题目知识 考察sql注入知识,题目地址:http://101.200.145.44/web1//ind ...

  9. 百练6255-单词反转-2016正式B题

    百练 / 2016计算机学科夏令营上机考试 已经结束 题目 排名 状态 统计 提问   B:单词翻转 查看 提交 统计 提问 总时间限制:  1000ms 内存限制:  65536kB 描述 输入一个 ...

随机推荐

  1. PHP实用代码片段(四)

    1. 删除文件夹内容 function Delete($path) { if (is_dir($path) === true) { $files = array_diff(scandir($path) ...

  2. (Beta)Let's-M2后分析报告

    设想和目标 1. 我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述? 在M1阶段我们对用户需求进行了调研,同时M1阶段我们的开发目标就是为了解决用户发起.参与.查看.搜 ...

  3. 1177: LFX学橙啦!题解

    问题如下:先给你一个含有N个整数的数组数组中的每一个元素只为1或者0而N的大小为1~100你可以删除一些元素(也可以选择不删除),使剩下的数组中,没有一个元素0在1后面出现.并且要使剩下的元素的数量最 ...

  4. Django 2.0 学习

    Django django是基于MTV结构的WEB框架 Model 数据库操作 Template 模版文件 View 业务处理 在Python中安装django 2.0 1 直接安装 pip inst ...

  5. stark组件之pop页面,按钮,url,页面

      1.Window open() 方法 2.admin的pop添加按钮 3.stark之pop功能 3.知识点总结 4.coding代码 1.Window open() 方法 效果图   2.adm ...

  6. Individual Project

    这次我自己完成了一个小小的项目,课可以把这篇随笔当做一次实验报告,主要的内容是用JUnit进行单元测试.由于我的技术太弱了,就在博客园里“求师”,按照大神的方法慢慢把这些东西写了下啦来. 不知道怎么搞 ...

  7. VS2008引入头文件包含目录和lib库目录

    全局级别的引入 为VS所有项目设置包含目录和库目录,对所有项目都有效 如下图所示:工具-选项-项目和解决方案-VC++目录-包含文件:在此添加头文件目录即可 工具-选项-项目和解决方案-VC++目录- ...

  8. [转帖]Kerberos和NTLM - SQL Server

    Kerberos和NTLM - SQL Server https://www.cnblogs.com/dreamer-fish/p/3458425.html 当我们使用Windows Authenti ...

  9. docker 操作镜像的基本操作

    以安装mysql为例 1.拉取镜像 docker pull mysql 错误的启动 [root@localhost ~]# docker run --name mysql01 -d mysql 42f ...

  10. 如何使用 Yum Repository 安装指定版本的 MySQL

    自从从使用 debian 系的 apt-get 转到使用 yum 工具之后一直不是很习惯,也没有去看过很多工具包安装的时候到底影响到了哪些文件等.这次借这次社区版 MySQL 安装来一并梳理一下. 首 ...