【BZOJ5336】[TJOI2018]party(动态规划)
【BZOJ5336】[TJOI2018]party(动态规划)
题面
题解
这题好神仙啊。。。
考虑普通的\(LCS\)的\(dp\),\(f[i][j]=\max\{f[i-1][j],f[i][j-1],f[i-1][j-1]+(A_i==B_j)\}\)
发现对于固定的\(i\)而言,随着\(j\)的增长,相邻的两个数之间的差不超过\(1\),因此直接考虑一个\(2^k\)的状态记录差分的结果。
那么设\(f[i][S]\)表示当前考虑到了第\(i\)位,\(LCS\)的\(dp\)的差分数组为\(S\)的方案数。转移的时候枚举放那个字母就好了。因为还有连续字符的限制,所以再加一维就没有问题了。
这里转移因为会涉及差分数组的修改,所以可以提前把差分数组的转移给预处理出来,
然后大力\(dp\)就好了。
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define MOD 1000000007
#define MAX 1010
char ch[20],QwQ[5]="NOI";
int f[2][1<<15][3],tr[1<<15][3],cnt[1<<15];
int n,k,ans[MAX];
void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;}
int dp[16],tmp[16];
int Get(int S,int c)
{
for(int i=1;i<=k;++i)dp[i]=dp[i-1]+((S>>(i-1))&1);
for(int i=1;i<=k;++i)
if(QwQ[c]==ch[i])tmp[i]=dp[i-1]+1;
else tmp[i]=max(dp[i],tmp[i-1]);
int ret=0;
for(int i=1;i<=k;++i)ret|=(tmp[i]-tmp[i-1])<<(i-1);
return ret;
}
int main()
{
scanf("%d%d",&n,&k);scanf("%s",ch+1);
for(int i=0;i<1<<k;++i)
for(int c=0;c<3;++c)
tr[i][c]=Get(i,c);
for(int i=0;i<(1<<k);++i)cnt[i]=cnt[i>>1]+(i&1);
f[0][0][0]=1;
for(int i=1,nw=1,pw=0;i<=n;++i,nw^=1,pw^=1)
{
memset(f[nw],0,sizeof(f[nw]));
for(int j=0;j<1<<k;++j)
for(int p=0;p<3;++p)
for(int c=0;c<3;++c)
{
int np;
if(c==0)np=1;else if(c==1)np=p==1?2:0;else if(c==2)np=p==2?3:0;
if(np==3)continue;
add(f[nw][tr[j][c]][np],f[pw][j][p]);
}
}
for(int i=0;i<1<<k;++i)
for(int c=0;c<3;++c)
add(ans[cnt[i]],f[n&1][i][c]);
for(int i=0;i<=k;++i)printf("%d\n",ans[i]);
return 0;
}
【BZOJ5336】[TJOI2018]party(动态规划)的更多相关文章
- BZOJ5336 TJOI2018 party 【状压DP】*
BZOJ5336 TJOI2018 party Description 小豆参加了NOI的游园会,会场上每完成一个项目就会获得一个奖章,奖章 只会是N, O, I的字样.在会场上他收集到了K个奖章组成 ...
- BZOJ5336: [TJOI2018]party
BZOJ5336: [TJOI2018]party https://lydsy.com/JudgeOnline/problem.php?id=5336 分析: 好题. 正常的思路是设\(f[i][j] ...
- [模板] dp套dp && bzoj5336: [TJOI2018]party
Description Problem 5336. -- [TJOI2018]party Solution 神奇的dp套dp... 考虑lcs的转移方程: \[ lcs[i][j]=\begin{ca ...
- DP套DP
DP套DP,就是将内层DP的结果作为外层DP的状态进行DP的方法. [BZOJ3864]Hero meet devil 对做LCS的DP数组差分后状压,预处理出转移数组,然后直接转移即可. tr[S] ...
- 【BZOJ5337】[TJOI2018]str(动态规划,哈希)
[BZOJ5337][TJOI2018]str(动态规划,哈希) 题面 BZOJ 洛谷 题解 就很呆... 显然按层\(dp\),如果能够匹配上就进行转移,直接哈希判断是否能够匹配就好了... #in ...
- BZOJ5337 [TJOI2018] 碱基序列 【哈希】【动态规划】
题目分析: 这道题的难点在于要取模,而题面没有写. 容易想到一个O(1E7)的dp.KMP或者哈希得到相关位置然后对于相关位置判断上一个位置有多少种情况. 代码: #include<bits/s ...
- BZOJ5336:[TJOI2018]游园会——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=5336 https://www.luogu.org/problemnew/show/P4590 小豆 ...
- 增强学习(三)----- MDP的动态规划解法
上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...
- 简单动态规划-LeetCode198
题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...
随机推荐
- elasticsearch数据输入和输出
Elastcisearch 是分布式的 文档 存储.它能存储和检索复杂的数据结构–序列化成为JSON文档–以 实时 的方式. 换句话说,一旦一个文档被存储在 Elasticsearch 中,它就是可以 ...
- debian下 Hadoop 1.0.4 集群配置及运行WordCount
说明:我用的是压缩包安装,不是安装包 官网安装说明:http://hadoop.apache.org/docs/r1.1.2/cluster_setup.html,繁冗,看的眼花...大部分人应该都不 ...
- Memcached 集群架构与memcached-session-manager
Memcached 集群架构方面的问题_知识库_博客园https://kb.cnblogs.com/page/69074/ memcached-session-manager配置 - 学习中间件调优管 ...
- Zabbix appliance manual
https://www.zabbix.com/documentation/4.0/manual/appliance If the appliance fails to start up in Hype ...
- jQuery操作复选框checkbox技巧总结 ---- 设置选中、取消选中、获取被选中的值、判断是否选中等
转载:https://blog.csdn.net/chenchunlin526/article/details/77448168 jQuery操作复选框checkbox技巧总结 --- 设置选中.取消 ...
- Some beautiful Progress Bars in WPF
1.Better WPF Circular Progress Bar 2.Bending the WPF ProgressBar 3.A CIRCULAR PROGRESSBAR STYLE USIN ...
- API知识点总结
一.开发api接口开放给其他人调用的api接口(短信接口,支付宝api) 二.api安全弱点数据窃取(解决加密),数据篡改(解决MD5),数据泄露(爬虫技术)(解决令牌)1.加密(HTTPS传输-收费 ...
- CDH 6.0.1 集群搭建 「Process」
这次搭建我使用的机器 os 是 Centos7.4 RH 系的下面以流的方式纪录搭建过程以及注意事项 Step1: 配置域名相关,因为只有三台机器组集群,所以直接使用了 hosts 的方法: 修改主机 ...
- HDU 5025 Saving Tang Monk
Problem Description <Journey to the West>(also <Monkey>) is one of the Four Great Classi ...
- Windows 7 SP1 x64 LSP
NALapi.dll napinsp.dll pnrpnsp.dll mswsock.dll winrnr.dll