【BZOJ5336】[TJOI2018]party(动态规划)
【BZOJ5336】[TJOI2018]party(动态规划)
题面
题解
这题好神仙啊。。。
考虑普通的\(LCS\)的\(dp\),\(f[i][j]=\max\{f[i-1][j],f[i][j-1],f[i-1][j-1]+(A_i==B_j)\}\)
发现对于固定的\(i\)而言,随着\(j\)的增长,相邻的两个数之间的差不超过\(1\),因此直接考虑一个\(2^k\)的状态记录差分的结果。
那么设\(f[i][S]\)表示当前考虑到了第\(i\)位,\(LCS\)的\(dp\)的差分数组为\(S\)的方案数。转移的时候枚举放那个字母就好了。因为还有连续字符的限制,所以再加一维就没有问题了。
这里转移因为会涉及差分数组的修改,所以可以提前把差分数组的转移给预处理出来,
然后大力\(dp\)就好了。
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define MOD 1000000007
#define MAX 1010
char ch[20],QwQ[5]="NOI";
int f[2][1<<15][3],tr[1<<15][3],cnt[1<<15];
int n,k,ans[MAX];
void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;}
int dp[16],tmp[16];
int Get(int S,int c)
{
for(int i=1;i<=k;++i)dp[i]=dp[i-1]+((S>>(i-1))&1);
for(int i=1;i<=k;++i)
if(QwQ[c]==ch[i])tmp[i]=dp[i-1]+1;
else tmp[i]=max(dp[i],tmp[i-1]);
int ret=0;
for(int i=1;i<=k;++i)ret|=(tmp[i]-tmp[i-1])<<(i-1);
return ret;
}
int main()
{
scanf("%d%d",&n,&k);scanf("%s",ch+1);
for(int i=0;i<1<<k;++i)
for(int c=0;c<3;++c)
tr[i][c]=Get(i,c);
for(int i=0;i<(1<<k);++i)cnt[i]=cnt[i>>1]+(i&1);
f[0][0][0]=1;
for(int i=1,nw=1,pw=0;i<=n;++i,nw^=1,pw^=1)
{
memset(f[nw],0,sizeof(f[nw]));
for(int j=0;j<1<<k;++j)
for(int p=0;p<3;++p)
for(int c=0;c<3;++c)
{
int np;
if(c==0)np=1;else if(c==1)np=p==1?2:0;else if(c==2)np=p==2?3:0;
if(np==3)continue;
add(f[nw][tr[j][c]][np],f[pw][j][p]);
}
}
for(int i=0;i<1<<k;++i)
for(int c=0;c<3;++c)
add(ans[cnt[i]],f[n&1][i][c]);
for(int i=0;i<=k;++i)printf("%d\n",ans[i]);
return 0;
}
【BZOJ5336】[TJOI2018]party(动态规划)的更多相关文章
- BZOJ5336 TJOI2018 party 【状压DP】*
BZOJ5336 TJOI2018 party Description 小豆参加了NOI的游园会,会场上每完成一个项目就会获得一个奖章,奖章 只会是N, O, I的字样.在会场上他收集到了K个奖章组成 ...
- BZOJ5336: [TJOI2018]party
BZOJ5336: [TJOI2018]party https://lydsy.com/JudgeOnline/problem.php?id=5336 分析: 好题. 正常的思路是设\(f[i][j] ...
- [模板] dp套dp && bzoj5336: [TJOI2018]party
Description Problem 5336. -- [TJOI2018]party Solution 神奇的dp套dp... 考虑lcs的转移方程: \[ lcs[i][j]=\begin{ca ...
- DP套DP
DP套DP,就是将内层DP的结果作为外层DP的状态进行DP的方法. [BZOJ3864]Hero meet devil 对做LCS的DP数组差分后状压,预处理出转移数组,然后直接转移即可. tr[S] ...
- 【BZOJ5337】[TJOI2018]str(动态规划,哈希)
[BZOJ5337][TJOI2018]str(动态规划,哈希) 题面 BZOJ 洛谷 题解 就很呆... 显然按层\(dp\),如果能够匹配上就进行转移,直接哈希判断是否能够匹配就好了... #in ...
- BZOJ5337 [TJOI2018] 碱基序列 【哈希】【动态规划】
题目分析: 这道题的难点在于要取模,而题面没有写. 容易想到一个O(1E7)的dp.KMP或者哈希得到相关位置然后对于相关位置判断上一个位置有多少种情况. 代码: #include<bits/s ...
- BZOJ5336:[TJOI2018]游园会——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=5336 https://www.luogu.org/problemnew/show/P4590 小豆 ...
- 增强学习(三)----- MDP的动态规划解法
上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...
- 简单动态规划-LeetCode198
题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...
随机推荐
- iOS-拍照后裁剪,不可拖动照片的问题
2016.07.08 15:04* 字数 1837 阅读 6066评论 6喜欢 26赞赏 1 问题 在项目中,选择照片或拍照的功能很长见,由于我之前采用系统自带的UIimagePickViewCont ...
- sqlServer问题记录
1.sql 2008 无法绑定由多个部分绑定的标示符 连接中的多个表中存在同名字段,通过设置别名访问即可 2.远程无法连接到sqlserver 计算机管理->服务与应用程序->SQL Se ...
- Executor介绍
1.Executor介绍: Executor是mybatis的核心接口之一,其中定义了数据库操作的基本方法,它的子类结构图如下:这这张关系图中,涉及到了模板方法模式和装饰器模式.BaseExecuto ...
- SpringBoot 中 JPA 的使用
详细连接 简书https://www.jianshu.com/p/c14640b63653 新建项目,增加依赖 在 Intellij IDEA 里面新建一个空的 SpringBoot 项目.具体步骤参 ...
- java 调用 wsdl形式的webservice 示例
import java.rmi.RemoteException; import javax.xml.rpc.ParameterMode; import javax.xml.rpc.ServiceExc ...
- sed 双引号 单引号的区别
a="abcd" b="abc" sed -i '/$a/ s/$/$b/' test.a 我想在test.a中匹配以”abcd“开头的行,然后在行尾加入”ab ...
- ArcGIS DeskTop 10.2 的安装与破解
ArcGIS DeskTop 10.2套件作为一组常用的ArcGIS软件为我们提供了对地图原始数据进行加工以及各种操作,通过这组软件我们能够很好地定制我们最终的地图样式,但是更多的时候我们需要对这组软 ...
- Canvas & SVG
Canvas & SVG https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-dev ...
- MyBatis的XML中使用内部类的方式
内部类需要使用$符号连接,而不是点.,如 com.pingan.job.openapi.model.SMSESBResult$ReceiveResult$ResultInfo 从CSDN论坛查到的. ...
- python易混易乱(2)
字符串切割成列表: 以str为分隔符切片mystr,如果maxsplit有指定值,则仅分割maxsplit个字符串,得到maxsplit个字符串的列表 利用字符串的split() 方法 >> ...