CS Academy Gcd on a Circle(dp + 线段树)
题意
给你一个长为 \(n\) 的环,你可以把它断成任意 \(k\) 段 \((1 < k \le n)\) ,使得每一段的 \(\gcd\) 都 \(>1\) 。
问总共有多少种方案,对于 \(10^9 + 7\) 取模。
\(n \le 10^5, 2 \le a_i \le 10^9\) 。
题解
首先我们考虑序列上怎么做。
我们令 \(dp_i\) 为到 \(i\) 这个点的方案数, \(pre_i\) 为 \(i\) 向前延伸最长的那个点满足 \((\displaystyle \gcd_{j = pre_i}^{i} a[j]) > 1\) 。
那么
\]
显然这个 \(dp\) 可以用前缀和来进行优化成 \(O(n)\) 的。
至于 \(pre_i\) 的处理可以用线段树求区间 \(\gcd\) ,然后用 two-pointers
来扫端点就行了,是 \(O(n( \log n + \log V))\) 的( \(\displaystyle V = \max_{i=1}^{n} a_i\) )。
好像利用 \(\gcd\) 的一些奇怪势能分析可以证明。
然后如果成环的话,我们只需要多考虑一种情况也就是 \(1,n\) 相连。
对于这种情况,可以考虑枚举最后面有 \(k\) 个数和 \(n\) 相连就行了。
然后每次计算的时候,可以类似于前面 \(dp\) 的计算就行了,但是要注意一下,那个 \([pre_i = 1]\) 要转化成后面 \(k\) 个数与前缀的 \(\gcd\) 是否 \(>1\) 。(也就是我们强行把后 \(k\) 个数当做一个整体提到前面就行了)
然后这样直接做是 \((n^2 \log V)\) 的,不够优秀。
但是我们发现很多数其实没有什么本质区别的,也就是后缀 \(\gcd\) 相同的一部分点可以一起计算。
这样的话,我们可以只在 \(\gcd\) 转折处,以及 \(0\) 号点计算就行了(因为要考虑上 \(1\) 向后那一片 \(\gcd\) 相同的数)。然后复杂度就是 \(O(n \log^2 V)\) 的了。
因为一个点向一端不断延伸,它的 \(\gcd\) 变换次数是 \(O(\log V)\) 的,因为每次变化至少会对于其中一个指数 \(-1\) 。
还有个特殊情况,也就是全部 \(\gcd > 1\) 的情况,需要将方案数 \(- (n - 1)\) 。(因为至少要分成 \(1\) 段)
最后就是 \(O(n (\log n + \log V) \log V)\) 的。
总结
对于一类划分环计数的题目,可以考虑枚举最后面那一段和前面相连的长度,然后直接一遍 \(O(n)\) 计数。
对于有些关于 \(\gcd\) 的题可以利用 \(\gcd\) 变换次数不超过 \(O(\log V)\) 来做。
代码
代码还是很好写的,可以参考一下。(其实博主参考了一下 ysgs 大佬的代码 )
#include <bits/stdc++.h>
#define For(i, l, r) for(register int i = (l), i##end = (int)(r); i <= i##end; ++i)
#define Fordown(i, r, l) for(register int i = (r), i##end = (int)(l); i >= i##end; --i)
#define Set(a, v) memset(a, v, sizeof(a))
#define Cpy(a, b) memcpy(a, b, sizeof(a))
#define debug(x) cout << #x << ": " << x << endl
#define DEBUG(...) fprintf(stderr, __VA_ARGS__)
using namespace std;
inline bool chkmin(int &a, int b) {return b < a ? a = b, 1 : 0;}
inline bool chkmax(int &a, int b) {return b > a ? a = b, 1 : 0;}
inline int read() {
int x = 0, fh = 1; char ch = getchar();
for (; !isdigit(ch); ch = getchar()) if (ch == '-') fh = -1;
for (; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + (ch ^ 48);
return x * fh;
}
void File() {
#ifdef zjp_shadow
freopen ("gcd-on-a-circle.in", "r", stdin);
freopen ("gcd-on-a-circle.out", "w", stdout);
#endif
}
#define lson o << 1, l, mid
#define rson o << 1 | 1, mid + 1, r
const int N = 1e5 + 1e3, Mod = 1e9 + 7;
int a[N];
struct Segment_Tree {
int Gcd[N << 2];
void Build(int o, int l, int r) {
if (l == r) { Gcd[o] = a[l]; return ; }
int mid = (l + r) >> 1;
Build(lson); Build(rson); Gcd[o] = __gcd(Gcd[o << 1], Gcd[o << 1 | 1]);
}
int Query(int o, int l, int r, int ql, int qr) {
if (ql <= l && r <= qr) return Gcd[o];
int mid = (l + r) >> 1;
if (qr <= mid) return Query(lson, ql, qr);
if (ql > mid) return Query(rson, ql, qr);
return __gcd(Query(lson, ql, qr), Query(rson, ql, qr));
}
} T;
inline int Add(int a, int b) { return (a += b) >= Mod ? a - Mod : a; }
int n, sum[N], dp[N], pre[N];
void Calc(int cur) {
sum[0] = 1;
For (i, 1, n) {
cur = __gcd(cur, a[i]);
if (cur > 1) dp[i] = sum[i - 1];
else dp[i] = Add(sum[i - 1], Mod - sum[max(0, pre[i] - 2)]);
sum[i] = Add(sum[i - 1], dp[i]);
}
}
int main () {
File();
n = read();
For (i, 1, n) a[i] = read(); T.Build(1, 1, n);
pre[1] = 1;
For (i, 2, n)
for (pre[i] = pre[i - 1]; pre[i] < i; ++ pre[i])
if (T.Query(1, 1, n, pre[i], i) > 1) break;
int Last = n, suf = 0, cur, ans = 0;
Fordown (i, n, 1) {
cur = __gcd(a[i], suf);
if (cur != suf || i == 1) {
Calc(suf); ans = Add(ans, Add(sum[Last], Mod - sum[i - 1]));
Last = i - 1; suf = cur;
}
}
printf ("%d\n", Add(ans, (Mod - (T.Gcd[1] > 1 ? (n - 1) : 0))));
return 0;
}
CS Academy Gcd on a Circle(dp + 线段树)的更多相关文章
- ZOJ 3349 Special Subsequence 简单DP + 线段树
同 HDU 2836 只不过改成了求最长子串. DP+线段树单点修改+区间查最值. #include <cstdio> #include <cstring> #include ...
- hdu 3016 dp+线段树
Man Down Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total S ...
- cf834D(dp+线段树区间最值,区间更新)
题目链接: http://codeforces.com/contest/834/problem/D 题意: 每个数字代表一种颜色, 一个区间的美丽度为其中颜色的种数, 给出一个有 n 个元素的数组, ...
- Codeforces Round #620 F2. Animal Observation (hard version) (dp + 线段树)
Codeforces Round #620 F2. Animal Observation (hard version) (dp + 线段树) 题目链接 题意 给定一个nm的矩阵,每行取2k的矩阵,求总 ...
- POJ1769 Minimizing maximizer(DP + 线段树)
题目大概就是要,给一个由若干区间[Si,Ti]组成的序列,求最小长度的子序列,使这个子序列覆盖1到n这n个点. dp[i]表示从第0个到第i个区间且使用第i个区间,覆盖1到Ti所需的最少长度 对于Si ...
- [USACO2005][POJ3171]Cleaning Shifts(DP+线段树优化)
题目:http://poj.org/problem?id=3171 题意:给你n个区间[a,b],每个区间都有一个费用c,要你用最小的费用覆盖区间[M,E] 分析:经典的区间覆盖问题,百度可以搜到这个 ...
- POJ 3162 Walking Race 树形DP+线段树
给出一棵树,编号为1~n,给出数m 漂亮mm连续n天锻炼身体,每天会以节点i为起点,走到离i最远距离的节点 走了n天之后,mm想到知道自己这n天的锻炼效果 于是mm把这n天每一天走的距离记录在一起,成 ...
- 【uva1502/hdu4117-GRE Words】DP+线段树优化+AC自动机
这题我的代码在hdu上AC,在uva上WA. 题意:按顺序输入n个串以及它的权值di,要求在其中选取一些串,前一个必须是后一个的子串.问d值的和最大是多少. (1≤n≤2×10^4 ,串的总长度< ...
- bzoj 1835 [ZJOI2010]base 基站选址(DP+线段树)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1835 [题意] 有n个村庄,每个村庄位于d[i],要求建立不多于k个基站,在第i个村庄 ...
随机推荐
- SQLSERVER事务日志已满 the transaction log for database 'xx' is full
解决办法:清除日志 USE [master] GO ALTER DATABASE DNName SET RECOVERY SIMPLE WITH NO_WAIT GO ALTER DATABASE D ...
- 帮助小白,最新版JDK的安装与环境变量配置(Win 10系统)
学习JAVA,必须首先安装一下JDK(java development kit java开发工具包),之后再配置环境变量就可以开始使用JAVA了. 一,安装JDK 1,可以选择到官网下载最新版本的JD ...
- PhpStorm的注册激活方法
首先,需要修改本地的hosts文件(路径一般为C:\Windows\System32\drivers\etc\hosts),添加下面这行代码. 0.0.0.0 account.jetbrains.co ...
- 【kindle笔记】之 《明朝那些事儿》-2018-7-1
[kindle笔记]读书记录-总 最近在读这本书.之前在微信读书里断断续续读过,读到深处还想蹦起来做笔记那种.后来种种原因断了,再没续上. 现在又开始啦.最近还在重八兄造反阶段,还很早呢,有时候晚上玩 ...
- tomcat one connection one thread one request one thread
java - What is the difference between thread per connection vs thread per request? - Stack Overflow ...
- myecplise ssh项目配置上遇到的问题
版本:spring3.1+hib4.1+struts2.1 学习项目使用此版本运行时,总是会遇到各样的错误,在这里做一下记录. 问题1:log4j相关 spring的web项目,执行时报错: 信息: ...
- 通过爬虫程序深入浅出java 主从工作模型
随手做的爬虫程序在 https://github.com/rli07/master_java/blob/master/spider.zip 可下载. 这是我做的系统学习图, 可以参考一下 系统架 ...
- 爱上linux 简单实现移动办公处理环境.
1. 这周一直在鼓捣linux上面的环境测试. 简单的将 我们的产品部署到了linux上面 详情见前面的 blog 2. 有时候下班了 或者是 在WC (科技园wc排队 说多了都是泪) 或者是眼睛不舒 ...
- LLVM的安装
1. 官网下载 llvm 2. 官网下载cmake 3. configure 执行 llvm 发现报错 4. 解压缩 cmake 5.将cmake 下面的bin 目录放到环境变量里面去 6. 创建一个 ...
- Docker部署运行springboot项目,并使用Dockerfile制作镜像
前言: 本来是要搭建一个自动化部署分布式项目的服务器平台的,使用jenkins+k8s+ELK+springboot把一个简单的springboot项目给搞起来,由于工程太大,先分开把每个技术组件单独 ...