传送门:>Here<

题意:给出一颗树,和K次操作。每次操作给出a,b,代表从a到b的路径上所有边的权值都+1(边权最开始全部为0)。最后依次输出每条边最终的权值

解题思路:

  由于n非常大,不能暴力搞。于是就有Dalao提出了树链剖分……好像很有道理

  然而,这是一道树上差分的经典题。于是就在这里介绍一下树上差分吧

  再理解树上差分之前,先来看一看普通的差分:

  给出一个全部为0的序列,每次操作给一段区间加上1,求最终序列中每个元素的值。

  考虑差分——每一次操作$[L, R]$,令差分数组$cf[L]++$,$cf[R+1]--$。最后在统计的时候,我们从头开始扫描依次加上$cf$数组的值,就会依次得到每个元素的值。为什么这样是正确的呢?所谓差分,就是通过对头尾的操作,来完成整个区间的操作。如果差分数组$cf[x]$增加了$k$,就意味着从$x$开始到最后每个元素的值都要加上$k$。减法也是一个道理。因此我在结尾R+1处-1,相当于消除了差分对除此区间以外的元素的印象,因为前面的+1和后面的-1正好互相抵消了。因此最后在统计答案时,依次加上差分数组的值就代表了当前元素的值了。这个方法的应用范围是很广的,例如覆盖问题等等

  理解了差分以后,树上差分也就是把差分放在了树上。当操作一次a到b之间的路径时,相当于$cf[a]++, cf[b]++, cf[lca(a, b)]-=2$. 此时我们的cf[i]的定义是从节点i到根节点的权值的前缀和,因此当我们操作a,b的路径时,相当于先把a到根的路径上+1,再把b到根的路径上+1,由于LCA到根的路径被重复加了两遍,因此减掉2. 统计的时候也和普通的差分一样,需要从前往后加起来得到当前边的经过次数。由于我们这里cf的数组时倒过来定义的,统计的时候也要从下往上走——在回溯的时候

  还有一个问题,为什么要把cf的定义反过来呢?为什么不能再LCA的地方+1,两个端点-1呢,统计好像更方便啊?注意,这可不是一颗二叉树。当你在LCA处打一个差分标记的时候,它的意义是它之后的点的权值全部+1,这也就囊括了它的其他子树,而别的子树可能并没有被经历。这也给我们一个提示,当我们要在子树上差分时,可以这样差分。

Code

  由于这道题是边权而不是点权,常见的做法是先把边权转化为点权,最后统计。很恶心的是这道题由于有边的编号,不得不使用链式前向星存图。而且是无向图,空间开两倍不能忘。a->b和b->a的边的编号恰好是$ (x^1)+2 $的关系。

/*by DennyQi*/
#include <cstdio>
#include <queue>
#include <algorithm>
#include <cstring>
#define r read()
#define Max(a,b) (((a)>(b))?(a):(b))
#define Min(a,b) (((a)<(b))?(a):(b))
using namespace std;
const int MAXN = ;
const int INF = 0x3f3f3f3f;
inline int read(){
int x = ; int w = ; register char c = getchar();
while(c ^ '-' && (c < '' || c > '')) c = getchar();
if(c == '-') w = -, c = getchar();
while(c >= '' && c <= '') x = (x<<) + (x<<) + c - '', c = getchar();
return x * w;
}
int N,x,y,num_edge,K;
int first[MAXN*],next[MAXN*],to[MAXN*],ans[MAXN*];
int dep[MAXN],f[MAXN][],cf[MAXN],val[MAXN];
inline void add(int u, int v){
to[++num_edge] = v;
next[num_edge] = first[u];
first[u] = num_edge;
}
void Dfs(int x, int father, int d){
dep[x] = d;
f[x][] = father;
for(int i = ; (<<i) <= d; ++i){
f[x][i] = f[f[x][i-]][i-];
}
int v;
for(int i = first[x]; i; i = next[i]){
v = to[i];
if(v == father) continue;
Dfs(v, x, d+);
}
}
inline int lca(int a, int b){
if(dep[a] < dep[b]) swap(a, b);
for(int i = ; i >= ; --i){
if((dep[a]-(<<i)) < dep[b]) continue;
a = f[a][i];
}
if(a == b) return a;
for(int i = ; i >= ; --i){
if(f[a][i] == f[b][i]) continue;
a = f[a][i];
b = f[b][i];
}
return f[a][];
}
void GetAns(int x, int father){
int v;
for(int i = first[x]; i; i = next[i]){
v = to[i];
if(v == father) continue;
GetAns(v, x);
val[x] += val[v];
ans[i] = val[v];
ans[(i^)+] = val[v];
}
val[x] += cf[x];
}
int main(){
// freopen(".in","r",stdin);
N=r;
for(int i = ; i < N; ++i){
x=r,y=r;
add(x, y);
add(y, x);
}
Dfs(, , );
K=r; int LCA;
while(K--){
x=r,y=r;
cf[x]++;
cf[y]++;
LCA = lca(x, y);
cf[LCA] -= ;
}
GetAns(, );
for(int i = ; i < N; ++i){
printf("%d ", ans[i<<]);
}
return ;
}

Codeforces191 C. Fools and Roads的更多相关文章

  1. CF 191C Fools and Roads lca 或者 树链剖分

    They say that Berland has exactly two problems, fools and roads. Besides, Berland has n cities, popu ...

  2. Codeforces 191C Fools and Roads(树链拆分)

    题目链接:Codeforces 191C Fools and Roads 题目大意:给定一个N节点的数.然后有M次操作,每次从u移动到v.问说每条边被移动过的次数. 解题思路:树链剖分维护边,用一个数 ...

  3. Fools and Roads CodeForces - 191C

    Fools and Roads CodeForces - 191C 题意:给出一棵n个节点的树,还有树上的k条简单路径(用路径的两个端点u和v表示),对于树上每一条边,求出其被多少条简单路径经过. 方 ...

  4. CF191C Fools and Roads - 树剖解法

    Codeforces Round #121 (Div. 1) C. Fools and Roads time limit per test :2 seconds memory limit per te ...

  5. [CF 191C]Fools and Roads[LCA Tarjan算法][LCA 与 RMQ问题的转化][LCA ST算法]

    参考: 1. 郭华阳 - 算法合集之<RMQ与LCA问题>. 讲得很清楚! 2. http://www.cnblogs.com/lazycal/archive/2012/08/11/263 ...

  6. 【CF】121 Div.1 C. Fools and Roads

    题意是给定一棵树.同时,给定如下k个查询: 给出任意两点u,v,对u到v的路径所经过的边进行加计数. k个查询后,分别输出各边的计数之和. 思路利用LCA,对cnt[u]++, cnt[v]++,并对 ...

  7. Codeforces 191 C Fools and Roads (树链拆分)

    主题链接~~> 做题情绪:做了HDU 5044后就感觉非常easy了. 解题思路: 先树链剖分一下,把树剖分成链,由于最后全是询问,so~能够线性操作.经过树链剖分后,就会形成很多链,可是每条边 ...

  8. 题解 CF191C 【Fools and Roads】

    树上差分半裸题 常规思路是进行三次DFS,然后常规运算即可 这里提供两次dfs的思路(wyz tql orz) 我们以样例2为例 我们考虑任意一条路径,令其起点为u终点为v,每走一次当前路径则v的访问 ...

  9. LCA+差分【CF191C】Fools and Roads

    Description 有一颗 \(n\) 个节点的树,\(k\) 次旅行,问每一条边被走过的次数. Input 第一行一个整数 \(n\) (\(2\leq n\leq 10^5\)). 接下来 \ ...

随机推荐

  1. 【内存溢出】Maven编译时内存溢出的问题解决方式

    原文地址:https://www.cnblogs.com/sunny3096/p/7524635.html 编译源码时报出java.lang.OutOfMemoryError: Java heap s ...

  2. Python全栈开发之路 【第七篇】:面向对象编程设计与开发(1)

    本节内容 一.编程范式 编程指的是写程序.敲代码,就是指程序员用特定的语法.数据结构和算法编写的代码,目的是来告诉计算机如何执行任务的. 在编程的世界里最常见的两大流派是:面向过程与面向对象.“功夫的 ...

  3. Mysql安装(Ubuntu)

    卸载方法一: --删除mysql的数据文件 sudo rm /var/lib/MySQL/ -R --删除mysql的配置文件 sudo rm /etc/mysql/ -R --自动卸载mysql(包 ...

  4. PEP 8 python编程规范

    一 代码编排 缩进.4个空格的缩进(编辑器都可以完成此功能),不使用Tap,更不能混合使用Tap和空格. 每行最大长度79,换行可以使用反斜杠,最好使用圆括号.换行点要在操作符的后边敲回车. 类和to ...

  5. Mysql之常用操作(2)

    Windows服务 -- 启动MySQL net start mysql -- 创建Windows服务 sc create mysql binPath= mysqld_bin_path(注意:等号与值 ...

  6. Windows和Linux的Jmeter分布式集群压力测试

    Windows的Jmeter分布式集群压力测试 原文:https://blog.csdn.net/cyjs1988/article/details/80267475 在使用Jmeter进行性能测试时, ...

  7. # 【Python3练习题 007】 有一对兔子,从出生后第3个月起每个月都生一对兔子, # 小兔子长到第三个月后每个月又生一对兔子, # 假如兔子都不死,问每个月的兔子总数为多少?

    # 有一对兔子,从出生后第3个月起每个月都生一对兔子,# 小兔子长到第三个月后每个月又生一对兔子, # 假如兔子都不死,问每个月的兔子总数为多少?这题反正我自己是算不出来.网上说是经典的“斐波纳契数列 ...

  8. spring aop学习记录

    许多AOP框架,比较常用的是Spring AOP 与AspectJ.这里主要学习的Spring AOP. 关于AOP 日志.事务.安全验证这些通用的.散步在系统各处的需要在实现业务逻辑时关注的事情称为 ...

  9. Thread类相关方法

    线程对象 每一个线程都是和类Thread的实例相关联的.在Java中,有两种基本的使用Thread对象的方式,可用来创建并发性程序.  1.在应用程序需要发起异步任务的时候,只要生成一个Thread对 ...

  10. Idea批量修改变量名

    Idea批量修改变量名.在变量名上进行rename操作,所有的同名变量都会自动更改. 快捷键:ALT+SHIFT+R