CodeFroces--Joseph’s Problem

题目意思:给出n k 求 k%1 + k%2 +k%3+...+k%n 的和
利用分块的思想 我们知道 k%i ==k-k/i*i
同时 一段连续的区间的 k/i 是相等的
#include<bits/stdc++.h>
using namespace std;
#define maxn
#define LL long long
int main(){
// freopen("joseph.in","r",stdin);
// freopen("joseph.out","w",stdout);
LL n,k;
cin>>n>>k;
LL ans=;
if(n>=k){
ans+=k*(n-k);
,r=;l<=k&&r<=k;l=r+){
r=k/(k/l);
LL len=r-l+;
ans+=len*k-(l+r)*len/*(k/l);
}
cout<<ans<<endl;
}else{
ans=;
,r=;l<=k;l=r+){
r=k/(k/l);
if(r>n) r=n;
LL len=r-l+;
ans+=len*k-(l+r)*len/*(k/l);
if(r==n) break;
}
cout<<ans<<endl;
}
}
CodeFroces--Joseph’s Problem的更多相关文章
- UVa 1363 (数论 数列求和) Joseph's Problem
题意: 给出n, k,求 分析: 假设,则k mod (i+1) = k - (i+1)*p = k - i*p - p = k mod i - p 则对于某个区间,i∈[l, r],k/i的整数部分 ...
- UVA 1363 Joseph's Problem 找规律+推导 给定n,k;求k%[1,n]的和。
/** 题目:Joseph's Problem 链接:https://vjudge.net/problem/UVA-1363 题意:给定n,k;求k%[1,n]的和. 思路: 没想出来,看了lrj的想 ...
- Problem J. Joseph’s Problem 约瑟夫问题--余数之和
链接:https://vjudge.net/problem/UVA-1363 题意:给出n k,当 i 属于 1~n 时 ,求解 n% i 的和 n 和 k 的范围都是 1 到 10^9; 商相同 ...
- UVa 1363 - Joseph's Problem(数论)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- UVA 1363 Joseph's Problem
https://vjudge.net/problem/UVA-1363 n 题意:求 Σ k%i i=1 除法分块 如果 k/i==k/(i+1)=p 那么 k%(i+1)=k-(i+1)*p= k ...
- LA 3521 Joseph's Problem
题意:给你正整数n和k,然后计算从i到n k%i的和: 思路:如果n小于1000000,直接暴力计算,然后大于1000000的情况,然后在讨论n和k的大小,根据k%i的情况,你会发现规律,是多个等差数 ...
- Joseph's Problem UVALive - 3521(等差数列的应用)
题意:给定n, k,求出∑ni=1(k mod i) 思路:由于n和k都很大,直接暴力是行不通的,然后在纸上画了一些情况,就发现其实对于k/i相同的那些项是形成等差数列的,于是就可以把整个序列进行拆分 ...
- UVALive - 3521 Joseph's Problem (整除分块)
给定$n,k$$(1\leqslant n,k\leqslant 10^9)$,计算$\sum\limits _{i=1}^nk\: mod\:i$ 通过观察易发现$k\%i=k-\left \lfl ...
- UVA1363 - Joseph's Problem(数学,迷之优化)
题意:给出n和k,1≤n,k≤1e9,计算 切入点是k/i 和 k/(i+1)差距不大.令pi = k/i, ri = k%i.如果pi+1 == pi,那么ri+1 == k - pi(i+1) = ...
- UVa1363 Joseph's Problem
把整个序列进行拆分成[k,k/2),[k/2, k/3), [k/3,k/4)...k[k/a, k/b)的形式,对于k/i(整除)相同的项,k%i成等差数列. /*by SilverN*/ #inc ...
随机推荐
- Linux 查询oracle错误日志&警告日志
1 通过命令查看错误日志目录:show parameter background_dump_dest /usr/oracle/app/diag/rdbms/orcl/orcl/trace 2 根据 ...
- [转帖]国产闪存颗粒终于熬出头 紫光存储S100固态硬盘评测
国产闪存颗粒终于熬出头 紫光存储S100固态硬盘评测 https://www.cnbeta.com/articles/tech/830875.htm 全国产的 SSD 群联貌似是对岸的 不过不管怎么说 ...
- JS --- 本地保存localStorage、sessionStorage用法总结
JS的本地保存localStorage.sessionStorage用法总结 localStorage.sessionStorage是Html5的特性,IE7以下浏览器不支持 为什么要掌握localS ...
- git遇到的问题 .Git: There is no tracking information for the current branch.
1.Git: There is no tracking information for the current branch. 在执行git pull的时候,提示当前branch没有跟踪信息: git ...
- dom 事件主要内容
一 . onclick(单击) 原图 单击btn1 在点击btn2 二 . onfocus 和 onblur onfocus(聚焦, 鼠标点击输入框) onblur(模糊, 鼠标点击输入框外的地方) ...
- 深入python的set和dict
一. collections中的abc 和list(Sequence)相似,都继承于Collection,添加了一些方法 二. dict的常见用法 (setdefault,defaultdict,__ ...
- css & clearfix & clear-fixed
css & clearfix & clear-fixed https://zzk.cnblogs.com/my/s/blogpost-p?Keywords=clearfix .grou ...
- 老男孩python学习自修第十九天【异常处理】
1.常见的错误 TypeError 类型错误 NameError 没有该变量 ValueError 不期望的值 AttributeError 没有该属性 UnboundLocalError 没有该局部 ...
- Java多线程之实现Runnable接口
package org.study2.javabase.ThreadsDemo.runnable; /** * @Auther:GongXingRui * @Date:2018/9/18 * @Des ...
- SVG路径
前面的话 本文将详细介绍SVG路径 path字符串 路径(path)是一个非常强大的绘图工具,可以用path元素绘制矩形(直角矩形或者圆角矩形).圆形.椭圆.折线形.多边形,以及一些其他的形状,例如贝 ...