代码: tensorflow/examples/tutorials/mnist/

本文的目的是来展示如何使用Tensorflow训练和评估手写数字识别问题。本文的观众是那些对使用Tensorflow进行机器学习感兴趣的人。

本文的目的并不是讲解机器学习。

请确认您已经安装了Tensorflow。

    教程文件

文件 作用
mnist.py 用来创建一个完全连接的MNIST模型。
fully_connected_feed.py 使用下载的数据集训练模型。

运行fully_connected_feed.py文件开始训练。

python fully_connected_feed.py

    准备数据

MNIST是机器学习的一个经典问题。这个问题是识别28*28像素图片上的数字,从0到9。

更多信息,请参考Yann LeCun's MNIST page 或者 Chris Olah's visualizations of MNIST

    数据下载

在run_training()方法之前,input_data.read_data_sets()方法可以让数据下载到本机训练文件夹,解压数据并返回一个DataSet实例。

data_sets = input_data.read_data_sets(FLAGS.train_dir, FLAGS.fake_data)

注意:fake_data是用来进行单元测试的,读者可以忽略。

数据集 作用
data_sets.train 55000图片和标签,用来训练。
data_sets.validation 5000图片和标签,用来在迭代中校验模型准确度。
data_sets.test 10000图片和标签,用来测试训练模型准确度。

    输入和占位符

placeholder_inputs()函数创建两个tf.placeholder,用来定义输入的形状,包括fetch_size。

images_placeholder = tf.placeholder(tf.float32, shape=(batch_size, mnist.IMAGE_PIXELS))
labels_placeholder = tf.placeholder(tf.int32, shape=(batch_size))

在训练循环中,图片和标签数据集会被切分成batch_size大小,跟占位符匹配,然后通过feed_dict参数传递到sess.run()方法中。

    创建图

创建占位符后,mnist.py文件中会通过三个步骤来创建图:inference(), loss(), 和training()。

  1. inference() - 运行网络来进行预测。
  2. loss() - 用来计算损失值。
  3. training() - 计算梯度。

    inference层

inference()函数创建图,返回预测结果。

它把图片占位符当作输入,并在上面构建一对完全连接的层,使用ReLU激活后,连接一个10个节点的线性层。

每一层都位于tf.name_scope声明的命名空间中。

with tf.name_scope('hidden1'):

在该命名空间中,权重和偏置会产生tf.Variable实例,并具有所需的形状。

weights = tf.Variable(tf.truncated_normal([IMAGE_PIXELS, hidden1_units], stddev=1.0 / math.sqrt(float(IMAGE_PIXELS))), name='weights')
biases = tf.Variable(tf.zeros([hidden1_units]), name='biases')

例如,这些会在hidden1命名空间中创建,那么权重的唯一名称为“hidden1/weights”。

每个变量使用初始化器作为构造函数。

通常,权重会使用tf.truncated_normal(截尾正态分布)作为初始化器,它是一个2D张量,第一个参数表示该层中的神经元数,第二个表示它连接的层中的神经元数。再第一层hidden1中,权限矩阵的大小是[图片像素, hidden1神经元数],因为该权重连接图片输入。tf.truncated_normal初始化器会根据平均值和标准差产生一些随机数。

然后,偏置会使用tf.zeros作为初始化器,保证开始时所有数都是0。它们的形状跟它们连接的层的神经元一样。

该图的三个主要运算:两个tf.nn.relu操作(包括隐层中的一个tf.matmul操作)和一个额外的tf.matmul操作。然后依次创建,连接到输入占位符或上一层的输出张量上。

hidden1 = tf.nn.relu(tf.matmul(images, weights) + biases)
hidden2 = tf.nn.relu(tf.matmul(hidden1, weights) + biases)
logits = tf.matmul(hidden2, weights) + biases

最后,logits张量包含输出结果。

    损失

loss()函数通过添加所需的损失操作来进一步构建图形。

首先,将labels_placeholder的值转换为64位整数。 然后,添加tf.nn.sparse_softmax_cross_entropy_with_logits操作,以自动从labels_placeholder产生标签,并将inference()函数的输出与这些标签进行比较。

labels = tf.to_int64(labels)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=labels, logits=logits, name='xentropy')

然后使用tf.reduce_mean将batch维度(第一维)的交叉熵的平均数作为总损耗。

loss = tf.reduce_mean(cross_entropy, name='xentropy_mean')

然后返回包含损失值的张量。

 
    注意:交叉熵是信息论中的一个想法,它使我们能够描述神经网络的预测有多糟糕。有关更多信息,请阅读博客文章Visual Information Theory(http://colah.github.io/posts/2015-09-Visual-Information/)
 
    训练
    training()函数通过梯度下降法计算最小损失。
    首先,它从loss()函数中获取损失张量,并将其传递给tf.summary.scalar,该函数用于在与tf.summary.FileWriter一起使用时将事件生成摘要。

tf.summary.scalar('loss', loss)

接下来,我们实例化一个tf.train.GradientDescentOptimizer,进行梯度下降算法。

optimizer = tf.train.GradientDescentOptimizer(learning_rate)

然后,我们定义一个变量,用来作为全局训练步骤的计数器,并且tf.train.Optimizer.minimize op用于更新系统中的可训练权重,并增加全局步长。 通常,这个操作被称为train_op. 它是由TensorFlow会话运行的,以便引导一个完整的训练步骤。

global_step = tf.Variable(0, name='global_step', trainable=False)
train_op = optimizer.minimize(loss, global_step=global_step)

    训练模型

构建图形后,可以在full_connected_feed.py中由用户代码控制的循环中进行迭代训练和评估。

在run_training()函数的顶部,其中的命令指示所有构建的操作都与默认的全局tf.Graph实例相关联。

with tf.Graph().as_default():

tf.Graph是可以作为一组一起执行的操作的集合。 大多数TensorFlow用户只需要依赖于单个默认图形。
    更复杂的使用多个图形是可能的,但超出了这个简单教程的范围。

会话

一旦所有的构建准备工作已经完成并且生成了所有必要的操作,就会创建一个tf.Session来运行图形。

sess = tf.Session()

或者,可以将会话生成到某个作用域中:

with tf.Session() as sess:

会话的空参数表示此代码将附加到默认本地会话(或创建尚未创建)。
    在创建会话之后,所有的tf.Variable实例都通过在初始化操作中调用tf.Session.run来初始化。

init = tf.global_variables_initializer()
sess.run(init)

tf.Session.run方法将进行参数传递操作。在这个调用中,只进行变量的初始值。 图的其余部分都不在这里运行; 这在下面的训练循环中运行。

    训练循环

在会话初始化变量后,可以开始训练。
    用户代码控制每一步的训练,最简单的循环可以是:

for step in xrange(FLAGS.max_steps):
    sess.run(train_op)

但是,本教程稍微复杂一些,因为它还必须分割每个步骤的输入数据,以匹配先前生成的占位符。

    数据输入到图

对于每个步骤,代码将生成一个Feed字典,其中包含一组数据,用于训练,由其所对应的占位符操作输入。
    在fill_feed_dict()函数中,查询给定的DataSet用于其下一个batch_size图像和标签集,填充与占位符匹配的张量,其中包含下一个图像和标签。

images_feed, labels_feed = data_set.next_batch(FLAGS.batch_size, FLAGS.fake_data)

然后生成一个python字典对象,其中占位符作为键,代表性的Feed张量作为值。

feed_dict = {
    images_placeholder: images_feed,
    labels_placeholder: labels_feed,
}

这将被传递给sess.run()函数的feed_dict参数,以供该训练循环使用。

    检查状态

该代码指定在运行调用中获取的两个值:[train_op,loss]。

for step in xrange(FLAGS.max_steps):
    feed_dict = fill_feed_dict(data_sets.train,
                               images_placeholder,
                               labels_placeholder)
    _, loss_value = sess.run([train_op, loss],
                             feed_dict=feed_dict)

因为要获取两个值,所以sess.run()返回一个包含两个项的元组。 要提取的值列表中的每个Tensor对应于返回的元组中的numpy数组,在该训练步骤中填充该张量的值。 由于train_op是没有输出值的操作,返回的元组中的相应元素为None,因此被丢弃。 然而,如果模型在训练过程中发生分歧,则损失张量的值可能变为NaN,因此我们捕获该值用于记录。
    假设没有NaN,训练运行良好,训练循环还会每100个步骤打印一个简单的状态文本,让用户知道训练状态。

if step % 100 == 0:
    print('Step %d: loss = %.2f (%.3f sec)' % (step, loss_value, duration))

    状态可视化

为了输出TensorBoard使用的事件文件,在图形构建阶段,所有的摘要(在这种情况下只有一个)被收集到一个Tensor中。

summary = tf.summary.merge_all()

然后在创建会话之后,可以将tf.summary.FileWriter实例化为写入事件文件,其中包含图形本身和摘要的值。

summary_writer = tf.summary.FileWriter(FLAGS.train_dir, sess.graph)

最后,每次评估摘要并将输出传递给add_summary()函数时,事件文件将被更新为新的摘要值。

summary_str = sess.run(summary, feed_dict=feed_dict)
summary_writer.add_summary(summary_str, step)

当写入事件文件时,可以针对训练文件夹运行TensorBoard,以显示摘要中的值。

注意:有关如何构建和运行Tensorboard的更多信息,请参阅随附的教程Tensorboard:可视化学习。

    保存检查点

为了输出一个检查点文件,可以用于稍后恢复模型进行进一步的训练或评估,我们实例化一个tf.train.Saver。

saver = tf.train.Saver()

在训练循环中,将定期调用tf.train.Saver.save方法,将训练中各变量的值写入检查点文件。

saver.save(sess, FLAGS.train_dir, global_step=step)

在稍后的某些时候,可以使用tf.train.Saver.restore方法来重新加载模型参数来恢复训练。

saver.restore(sess, FLAGS.train_dir)

    评估模型

每一步,代码将尝试针对训练和测试数据集来评估模型。 do_eval()函数被执行三次,用于训练,验证和测试数据集。

print('Training Data Eval:')
do_eval(sess,
        eval_correct,
        images_placeholder,
        labels_placeholder,
        data_sets.train)
print('Validation Data Eval:')
do_eval(sess,
        eval_correct,
        images_placeholder,
        labels_placeholder,
        data_sets.validation)
print('Test Data Eval:')
do_eval(sess,
        eval_correct,
        images_placeholder,
        labels_placeholder,
        data_sets.test)

请注意,更复杂的使用通常会将data_sets.test隔离,以便在大量超参数调整后才能进行检查。 然而,为了简单的小MNIST问题,我们对所有数据进行评估。

    构建评估图

在进入训练循环之前,评估操作应该是通过调用mnist.py中的evaluate()函数,使用与loss()函数相同的参数构建的。

eval_correct = mnist.evaluation(logits, labels_placeholder)

评估函数简单地生成一个tf.nn.in_top_k操作,如果真正的标签可以在K个最可能的预测中找到,那么可以自动对每个模型输出进行评分。 在这种情况下,我们将K的值设置为1,以便仅对真实标签考虑预测是否正确。

eval_correct = tf.nn.in_top_k(logits, labels, 1)

    评估输出

然后可以创建一个填充feed_dict的循环,并针对eval_correct op调用sess.run()来评估给定数据集上的模型。

for step in xrange(steps_per_epoch):
    feed_dict = fill_feed_dict(data_set,
                               images_placeholder,
                               labels_placeholder)
    true_count += sess.run(eval_correct, feed_dict=feed_dict)

true_count变量简单地累加了in_top_k op已经确定为正确的所有预测。 从那里可以从简单地除以实例的总数来计算精度。

precision = true_count / num_examples
print('  Num examples: %d  Num correct: %d  Precision @ 1: %0.04f' %
      (num_examples, true_count, precision))

原文:《TensorFlow Mechanics 101》:https://www.tensorflow.org/get_started/mnist/mechanics

13 Tensorflow机制(翻译)的更多相关文章

  1. rsync工作机制(翻译)

    本篇为rsync官方推荐文章How Rsync Works的翻译,主要内容是Rsync术语说明和简单版的rsync工作原理.本篇没有通篇都进行翻译,前言直接跳过了,但为了文章的完整性,前言部分的原文还 ...

  2. 13 Tensorflow API主要功能

    要想使用Tensorflow API,首先要知道它能干什么.Tensorflow具有Python.C++.Java.Go等多种语言API,其中Python的API是最简单和好用的. Tensor Tr ...

  3. 【Dart学习】-- Dart之消息循环机制[翻译]

    概述 异步任务在Dart中随处可见,例如许多库的方法调用都会返回Future对象来实现异步处理,我们也可以注册Handler来响应一些事件,如:鼠标点击事件,I/O流结束和定时器到期. 这篇文章主要介 ...

  4. 深入浅出 Java Concurrency (13): 锁机制 part 8 读写锁 (ReentrantReadWriteLock) (1)

      从这一节开始介绍锁里面的最后一个工具:读写锁(ReadWriteLock). ReentrantLock 实现了标准的互斥操作,也就是一次只能有一个线程持有锁,也即所谓独占锁的概念.前面的章节中一 ...

  5. 深入浅出 Java Concurrency (13): 锁机制 part 8 读写锁 (ReentrantReadWriteLock) (1)[转]

    从这一节开始介绍锁里面的最后一个工具:读写锁(ReadWriteLock). ReentrantLock 实现了标准的互斥操作,也就是一次只能有一个线程持有锁,也即所谓独占锁的概念.前面的章节中一直在 ...

  6. [翻译] TensorFlow 分布式之论文篇 "Implementation of Control Flow in TensorFlow"

    [翻译] TensorFlow 分布式之论文篇 "Implementation of Control Flow in TensorFlow" 目录 [翻译] TensorFlow ...

  7. [源码解析] TensorFlow 分布式 DistributedStrategy 之基础篇

    [源码解析] TensorFlow 分布式 DistributedStrategy 之基础篇 目录 [源码解析] TensorFlow 分布式 DistributedStrategy 之基础篇 1. ...

  8. [源码解析] TensorFlow 之 分布式变量

    [源码解析] TensorFlow 之 分布式变量 目录 [源码解析] TensorFlow 之 分布式变量 1. MirroredVariable 1.1 定义 1.2 相关类 1.2.1 类体系 ...

  9. [源码解析] TensorFlow 分布式之 ParameterServerStrategy V2

    [源码解析] TensorFlow 分布式之 ParameterServerStrategy V2 目录 [源码解析] TensorFlow 分布式之 ParameterServerStrategy ...

随机推荐

  1. Unity中AB资源打包简单的脚本

    脚本应该放在Editor文件夹下 using System.Collections; using System.Collections.Generic; using UnityEngine; usin ...

  2. Stanford CS20学习笔记

    Lecture Note 2 Tensorboard P3 Data Structures P4 Math Operations P6 Data Types P7 tf native &&am ...

  3. 初学者必看的文章:在VM12中安装 RedHat RHEL7.2  系统的详细步骤:看我如何操纵RHEL系统

    一.开始安装 1)新建虚拟机 RHEL7.2 2)成功引导系统--开机出现此画面 Install Red Hat EnterpriseLinux 7.2  安装RHLE7.2 操作系统 Test th ...

  4. CSS伪类的理解

    因为之前一直对css伪类没有过多的了解,在网上看到一段css代码,不能理解 a:hover span.title{ color:red; ......... } 现通过查询css手册,其实css伪类只 ...

  5. 如何利用Python实现自动打卡签到

    需求描述 我们需要登录考勤系统(网页端,非手机端)进行签到,如果不想每天都早早起来打卡签到,就可以通过写程序实现这一功能. 业务梳理 通过长时间的早起打卡签到发现规律,我每天只是不停的点击,签到,都是 ...

  6. Codeforces Round #424 (Div. 1, rated, based on VK Cup Finals)

    A 题意:给你人的坐标,钥匙的坐标,办公室的坐标.要求所有人能够拿到钥匙并且走到办公室的最短时间.一个位置只能有一个人,一个位置只有一把钥匙,人和钥匙可以在同一个位置. 思路:DP+贪心,dp[i]表 ...

  7. c++实现简单的客户端和服务端

    server.cpp #include<WinScok.h> #include<windows.h> #include<stdio.h> int main() { ...

  8. Java安全编码:糟糕的在线建议和令人困惑的APIs

    对于程序员和软件开发人员来说,网络论坛提供了一个交流知识和寻找具体编码难题答案的好地方.遗憾的是,他们并不总是准确信息的来源. 弗吉尼亚理工大学的一组研究人员分析了数百篇关于Stack Overflo ...

  9. Nerd的畅销产品

    感谢陈大先生花费时间一起细致地讨论这个课题,促成此文. <Nerd的套现ATM机>中已经谈到,对于nerd来讲最畅销的产品是“考试通过”.本文将继续这个话题的展开讨论,更深入细致地分析这个 ...

  10. 【设计经验】4、SERDES关键技术总结

    一.SERDES介绍 随着大数据的兴起以及信息技术的快速发展,数据传输对总线带宽的要求越来越高,并行传输技术的发展受到了时序同步困难.信号偏移严重,抗干扰能力弱以及设计复杂度高等一系列问题的阻碍.与并 ...