d叉堆的实现相对于二叉堆变化不大,首先看它如何用数组表示。

考虑一个索引从1开始的数组,一个结点i最多可以有d个子结点,编号从id - (d - 2) 到 id + 1。

从而可以知道一个结点i的父结点计算方法为: (i + d - 2) / d。

第二个问题是 一个含有n个元素的d叉堆的高度,就是一个简单的等比数列的问题,可以知道的是一颗高度为h的满d叉树所含的结点数目为(d^(h +1) - 1) / (d - 1)

从而一颗含有 n个结点的d叉树满足的条件为:

,从而得到高度h为:

接下来三个小问的实现思路就跟书中的伪码大同小异了,直接附上源码如下:

#include<iostream>
#include<algorithm>
using namespace std;
const int d = 5;
#define PARENT(i) (i + d - 2) / d
#define child(k) -(d - 2) + k - 1
void max_heapify(int A[], int i, int &size){
int largest = i;
for (int k = 1; k <= d; k ++){
int child = i + child(k);
if (child <= size && A[child] > A[largest])
largest = child;
}
if (largest != i) {
swap(A[i], A[largest]);
max_heapify(A, largest, size);
}
}
int heap_extract_max(int A[], int &size){
if (size < 1)
return -1;
int max = A[1];
A[1] = A[size];
size--;
max_heapify(A, 1, size);
return max;
}
void heap_increase_key(int A[], int i, int key){
if (key <= A[i]) return;
A[i] = key;
while (i > 1 && A[PARENT(i)] < A[i]){
swap(A[i], A[PARENT(i)]);
i = PARENT(i);
}
}
void max_heap_insert(int A[], int &size, int key){
size++;
A[size] = INT_MIN;
heap_increase_key(A, size, key);
}

  

算法导论 第六章 思考题 6-3 d叉堆的更多相关文章

  1. 算法导论 第六章 思考题6-3 Young氏矩阵

    这题利用二叉堆维持堆性质的办法来维持Young氏矩阵的性质,题目提示中写得很清楚,不过确实容易转不过弯来. a,b两问很简单.直接看c小问: 按照Young氏矩阵的性质,最小值肯定在左上角取得,问题在 ...

  2. 算法导论 第六章 堆排序(python)

    6.1堆 卫星数据:一个带排序的的数通常是有一个称为记录的数据集组成的,每一个记录有一个关键字key,记录的其他数据称为卫星数据. 原地排序:在排序输入数组时,只有常数个元素被存放到数组以外的空间中去 ...

  3. 算法导论 第六章 2 优先队列(python)

    优先队列:     物理结构: 顺序表(典型的是数组){python用到list}     逻辑结构:似完全二叉树 使用的特点是:动态的排序..排序的元素会增加,减少#和快速排序对比 快速一次排完 增 ...

  4. 《算法导论》第二章demo代码实现(Java版)

    <算法导论>第二章demo代码实现(Java版) 前言 表示晚上心里有些不宁静,所以就写一篇博客,来缓缓.囧 拜读<算法导论>这样的神作,当然要做一些练习啦.除了练习题与思考题 ...

  5. 《算法》第六章部分程序 part 7

    ▶ 书中第六章部分程序,加上自己补充的代码,包括全局最小切分 Stoer-Wagner 算法,最小权值二分图匹配 ● 全局最小切分 Stoer-Wagner 算法 package package01; ...

  6. 《算法》第六章部分程序 part 6

    ▶ 书中第六章部分程序,包括在加上自己补充的代码,包括二分图最大匹配(最小顶点覆盖)的交替路径算法和 HopcroftKarp 算法 ● 二分图最大匹配(最小顶点覆盖)的交替路径算法 package ...

  7. 《算法》第六章部分程序 part 5

    ▶ 书中第六章部分程序,包括在加上自己补充的代码,网络最大流 Ford - Fulkerson 算法,以及用到的流量边类和剩余流量网络类 ● 网络最大流 Ford - Fulkerson 算法 pac ...

  8. 为什么我要放弃javaScript数据结构与算法(第六章)—— 集合

    前面已经学习了数组(列表).栈.队列和链表等顺序数据结构.这一章,我们要学习集合,这是一种不允许值重复的顺序数据结构. 本章可以学习到,如何添加和移除值,如何搜索值是否存在,也可以学习如何进行并集.交 ...

  9. 《算法》第六章部分程序 part 8

    ▶ 书中第六章部分程序,加上自己补充的代码,包括单纯形法求解线性规划问题 ● 单纯形法求解线性规划问题 // 表上作业法,I 为单位阵,y 为对偶变量,z 为目标函数值 // n m 1 // ┌── ...

随机推荐

  1. Show()和ShowDialog()

    show()仅仅是显示出来窗口界面而已```也就是和你执行的结果在同一窗口显示```所显示的窗口可以在后台运行```而showDialog()是一个对话框窗口界面```执行结果以新窗口界面出现```不 ...

  2. HTML5自学笔记[ 19 ]canvas绘图实例之炫彩时钟

    <!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF-8&quo ...

  3. sina 行情api

    http://blog.csdn.net/simon803/article/details/7784682

  4. 聚类算法:ISODATA算法

    1. 与K-均值算法的比较 –K-均值算法通常适合于分类数目已知的聚类,而ISODATA算法则更加灵活: –从算法角度看, ISODATA算法与K-均值算法相似,聚类中心都是通过样本均值的迭代运算来决 ...

  5. 跨服务器导入数据SQL语句及其问题解决方案

    --跨服务器导入数据SQL语句: insert into [shsw_manager].[dbo].[Station_List]select * from OPENROWSET('SQLOLEDB', ...

  6. [转]JDK6和JDK7中的substring()方法

    substring(int beginIndex, int endIndex)在JDK6与JDK7中的实现方式不一样,理解他们的差异有助于更好的使用它们.为了简单起见,下面所说的substring() ...

  7. oracle 里面定时执行任务,比如存储过程内容等

    DECLARE   job_no_ NUMBER;   BEGIN      DBMS_JOB.SUBMIT(job_no_,                   'proc_qszx_dw_sc(' ...

  8. C#入门篇6-6:字符串操作 StringBiulder string char[]之间的转化

    //StringBiulder string char[]之间的转化 public static void Fun3() { StringBuilder sb = new StringBuilder( ...

  9. 深入理解Redis:命令处理流程

    Redis是著名的NoSQL键值数据库服务器,为了保证效率,其数据都缓存在内存中.与Memcached相比,Redis支持的数据类型更多,包括String,List,Set,Zset和Hash.下面简 ...

  10. Oracle连接出现TNS:no listener或者ORA-12514: TNS:listener does not currently know

    1.Message 850 not found; No message file for product=network, facility=NL 提示框:TNS:no listener 解决办法: ...