POJ 1860 Currency Exchange (最短路)
Currency Exchange
Time Limit : 2000/1000ms (Java/Other) Memory Limit : 60000/30000K (Java/Other)
Total Submission(s) : 4 Accepted Submission(s) : 2
For
example, if you want to exchange 100 US Dollars into Russian Rubles at the
exchange point, where the exchange rate is 29.75, and the commission is 0.39 you
will get (100 - 0.39) * 29.75 = 2963.3975RUR.
You surely know that there are
N different currencies you can deal with in our city. Let us assign unique
integer number from 1 to N to each currency. Then each exchange point can be
described with 6 numbers: integer A and B - numbers of currencies it exchanges,
and real RAB, CAB, RBA and CBA -
exchange rates and commissions when exchanging A to B and B to A respectively.
Nick has some money in currency S and wonders if he can somehow, after some
exchange operations, increase his capital. Of course, he wants to have his money
in currency S in the end. Help him to answer this difficult question. Nick must
always have non-negative sum of money while making his operations.
the number of currencies, M - the number of exchange points, S - the number of
currency Nick has and V - the quantity of currency units he has. The following M
lines contain 6 numbers each - the description of the corresponding exchange
point - in specified above order. Numbers are separated by one or more spaces.
1<=S<=N<=100, 1<=M<=100, V is real number,
0<=V<=10<sup>3</sup>. <br>For each point exchange rates
and commissions are real, given with at most two digits after the decimal point,
10<sup>-2</sup><=rate<=10<sup>2</sup>,
0<=commission<=10<sup>2</sup>. <br>Let us call some
sequence of the exchange operations simple if no exchange point is used more
than once in this sequence. You may assume that ratio of the numeric values of
the sums at the end and at the beginning of any simple sequence of the exchange
operations will be less than 10<sup>4</sup>. <br>
case output NO to the output file.
题目大意:有多种汇币,汇币之间可以交换,这需要手续费,当你用100A币交换B币时,A到B的汇率是29.75,手续费是0.39,那么你可以得到(100 - 0.39) * 29.75 = 2963.3975 B币。问s币的金额经过交换最终得到的s币金额数能否增加
货币的交换是可以重复多次的,所以我们需要找出是否存在正权回路,且最后得到的s金额是增加的
怎么找正权回路呢?(正权回路:在这一回路上,顶点的权值能不断增加即能一直进行松弛)
解题思路:单源最短路径算法,因为题目可能存在负边,所以用Bellman Ford算法,
原始Bellman Ford可以用来求负环,这题需要改进一下用来求正环
本题是“求最大路径”,之所以被归类为“求最小路径”是因为本题题恰恰与bellman-Ford算法的松弛条件相反,
求的是能无限松弛的最大正权路径,但是依然能够利用bellman-Ford的思想去解题。
因此初始化dis(S)=V 而源点到其他点的距离(权值)初始化为无穷小(0),当s到其他某点的距离能不断变大时,
说明存在最大路径;如果可以一直变大,说明存在正环。判断是否存在环路,用Bellman-Ford和spfa都可以。
AC代码:
#include <stdio.h>
#include <string.h>
double dis[];
int n,m,s,ans;
double v;
struct data
{
int x,y;
double r,c;
}num[];
void add(int a,int b,double c,double d)
{
num[ans].x = a;
num[ans].y = b;
num[ans].r = c;
num[ans].c = d;
ans ++;
}
bool Bellman_ford()
{
int i,j;
for (i = ; i <= n; i ++) //此处与Bellman-Ford的处理相反,初始化为源点到各点距离0,到自身的值为原值
dis[i] = ;
dis[s] = v;
bool flag;
for (i = ; i < n; i ++)
{
flag = false; //优化
for (j = ; j < ans; j ++)
if (dis[num[j].y] < (dis[num[j].x]-num[j].c)*num[j].r) //注意是小于号
{
dis[num[j].y] = (dis[num[j].x]-num[j].c)*num[j].r;
flag = true;
}
if (!flag) //如果没有更新,说明不存在正环
return false;
}
for (j = ; j < ans; j ++) //正环能够无限松弛
if (dis[num[j].y] < (dis[num[j].x]-num[j].c)*num[j].r)
return true; //有正环
return false;
}
int main ()
{
int i,j;
int a,b;
double r1,c1,r2,c2;
while (~scanf("%d%d%d%lf",&n,&m,&s,&v))
{
ans = ;
for (i = ; i < m; i ++)
{
scanf("%d%d%lf%lf%lf%lf",&a,&b,&r1,&c1,&r2,&c2);
add(a,b,r1,c1);
add(b,a,r2,c2);
}
if (Bellman_ford())
printf("YES\n");
else
printf("NO\n");
}
return ;
}
SPFA算法:
#include<stdio.h>
#include<string.h>
#include<queue>
using namespace std;
const int N = ;
int n, m, s;
double dis[N], v, rate[N][N], cost[N][N]; bool spfa(int start)
{
bool inq[];
memset(inq, , sizeof(inq));
memset(dis, , sizeof(dis));
dis[start] = v;
queue<int> Q;
Q.push(start);
inq[start] = true;
while(!Q.empty())
{
int x = Q.front();
Q.pop();
inq[x] = false;
for(int i = ; i <= n; i++)
{
if(dis[i] < (dis[x] - cost[x][i]) * rate[x][i])
{
dis[i] = (dis[x] - cost[x][i]) * rate[x][i];
if(dis[start] > v)
return true;
if(!inq[i])
{
Q.push(i);
inq[i] = true;
}
}
}
}
return false;
} int main()
{
int i, j;
while(~scanf("%d%d%d%lf",&n,&m,&s,&v))
{
int a, b;
double rab, rba, cab, cba;
for(i = ; i <= n; i++)
for(j = ; j <= n; j++)
{
if(i == j)
rate[i][j] = ;
else
rate[i][j] = ;
cost[i][j] = ;
}
for(i = ; i < m; i++)
{
scanf("%d%d%lf%lf%lf%lf",&a,&b,&rab,&cab,&rba,&cba);
rate[a][b] = rab;
rate[b][a] = rba;
cost[a][b] = cab;
cost[b][a] = cba;
}
if(spfa(s))
printf("YES\n");
else
printf("NO\n");
}
return ;
}
POJ 1860 Currency Exchange (最短路)的更多相关文章
- POJ 1860 Currency Exchange 最短路+负环
原题链接:http://poj.org/problem?id=1860 Currency Exchange Time Limit: 1000MS Memory Limit: 30000K Tota ...
- POJ 1860 Currency Exchange (最短路)
Currency Exchange Time Limit:1000MS Memory Limit:30000KB 64bit IO Format:%I64d & %I64u S ...
- poj 1860 Currency Exchange (最短路bellman_ford思想找正权环 最长路)
感觉最短路好神奇呀,刚开始我都 没想到用最短路 题目:http://poj.org/problem?id=1860 题意:有多种从a到b的汇率,在你汇钱的过程中还需要支付手续费,那么你所得的钱是 mo ...
- POJ 1860 Currency Exchange 最短路 难度:0
http://poj.org/problem?id=1860 #include <cstdio> //#include <queue> //#include <deque ...
- 最短路(Bellman_Ford) POJ 1860 Currency Exchange
题目传送门 /* 最短路(Bellman_Ford):求负环的思路,但是反过来用,即找正环 详细解释:http://blog.csdn.net/lyy289065406/article/details ...
- POJ 1860 Currency Exchange / ZOJ 1544 Currency Exchange (最短路径相关,spfa求环)
POJ 1860 Currency Exchange / ZOJ 1544 Currency Exchange (最短路径相关,spfa求环) Description Several currency ...
- POJ 1860 Currency Exchange + 2240 Arbitrage + 3259 Wormholes 解题报告
三道题都是考察最短路算法的判环.其中1860和2240判断正环,3259判断负环. 难度都不大,可以使用Bellman-ford算法,或者SPFA算法.也有用弗洛伊德算法的,笔者还不会SF-_-…… ...
- POJ 1860——Currency Exchange——————【最短路、SPFA判正环】
Currency Exchange Time Limit:1000MS Memory Limit:30000KB 64bit IO Format:%I64d & %I64u S ...
- POJ 1860 Currency Exchange【bellman_ford判断是否有正环——基础入门】
链接: http://poj.org/problem?id=1860 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22010#probl ...
随机推荐
- bzoj 2037: [Sdoi2008]Sue的小球
#include<cstdio> #include<iostream> #include<algorithm> using namespace std; struc ...
- EF Code-First数据迁移的尝试
Code-First的方式虽然省去了大量的sql代码,但增加了迁移的操作.尝试如下: 1.首先要在“扩展管理器”里搜索并安装NuGet“库程序包管理器”,否则所有命令都不能识别,会报CommandNo ...
- Mvc学习--1
1.缓存机制[OutputCache(Duration=10)] 后面的 duration 表示缓存时间 直接放在action上面 是一个特性2.文件上传 @using (Html.BeginForm ...
- android shape详解
shape--> shape属性: rectangle: 矩形,默认的形状,可以画出直角矩形.圆角矩形.弧形等 solid: 设置形状填充的颜色,只有android:color一个属性 andr ...
- 上架app 到app store 的出现: “The IPA is invalid. It does not inlude a Payload directory.”错误处理
今天打包上传app到app store上遇到的一个错误,在xcode6.2下提示: The IPA is invalid. It does not inlude a Payload director ...
- 《JAVA学习笔记(14-10---14-11抽象类)》
[14-10]面向对象-抽象类的产生 /* 描述狗,行为,吼叫. 描述狼,行为,吼叫. 发现他们之间有共性,可以进行向上抽取. 当然是抽取他们的所属共性类型,犬科. 犬科这类事物,都具备吼叫行为,但是 ...
- POJ 3156 - Interconnect (概率DP+hash)
题意:给一个图,有些点之间已经连边,现在给每对点之间加边的概率是相同的,问使得整个图连通,加边条数的期望是多少. 此题可以用概率DP+并查集+hash来做. 用dp(i,j,k...)表示当前的每个联 ...
- Ubuntu 14.10 下设置时间同步
在启动HBase机群的时候,发现了一个错误,因为机群时间不同步导致,所以要同步集群时间. Linux的时间分为System Clock(系统时间)和Real Time Clock (硬件时间,简称RT ...
- hdu 2075
PS:水得不能再水..刚开始还以为是大数..要用到快速幂...谁知道想太多...就普通int型.. 代码: #include "stdio.h" int main(){ int a ...
- 极客DIY:如何构建一台属于自己的基站
写在前面(原文作者) 上周我去特拉维夫(Tel Aviv)探望我的朋友结果有了一些收获,一块崭新的BladeRF(x40),即一个支持USB3.0的SDR平台,这就意味着可以同时发送和接收信息了.而H ...