POJ 1422 Air Raid (最小路径覆盖)
题意
给定一个有向图,在这个图上的某些点上放伞兵,可以使伞兵可以走到图上所有的点。且每个点只被一个伞兵走一次。问至少放多少伞兵。
思路
裸的最小路径覆盖。
°最小路径覆盖
【路径覆盖】在一个有向图G(V, E<u,v>)中,路径覆盖就是在图中找一些路经,使之覆盖了图中的所有顶点,且任何一个顶点有且只有一条路径与之关联(如果把这些路径中的每条路径从它的起始点走到它的终点,那么恰好可以经过图中的每个顶点一次且仅一次);如果不考虑图中存在回路,那么每条路径就是一个弱连通子集.
【最小路径覆盖】最小路径覆盖就是找出最小的路径条数,使之成为G的一个路径覆盖.
【解法 && 路径覆盖与二分图匹配的关系】最小路径覆盖=|V|-最大匹配数,其中最大匹配数的求法是把G中的每个顶点pi分成两个顶点pi'与pi'',如果在p中存在一条pi到pj的边,那么在二分图G'中就有一条连接pi'与pj''的无向边;这里pi' 就是p中pi的出边,pj''就是p中pj 的一条入边;
代码
[cpp]
#include
#include
#include
#include
#include
#include
#include
#define MID(x,y) ((x+y)/2)
#define MEM(a,b) memset(a,b,sizeof(a))
#define REP(i, begin, m) for (int i = begin; i < begin+m; i ++)
using namespace std;
const int MAXV = 1005; //N1+N2
vector adj[MAXV];
struct MaximumMatchingOfBipartiteGraph{
int vn;
void init(int n){ //二分图两点集点的个数
vn = n;
for (int i = 0; i <= vn; i ++) adj[i].clear();
}
void add_uedge(int u, int v){
adj[u].push_back(v);
adj[v].push_back(u);
}
bool vis[MAXV];
int mat[MAXV]; //记录已匹配点的对应点
bool cross_path(int u){
for (int i = 0; i < (int)adj[u].size(); i ++){
int v = adj[u][i];
if (!vis[v]){
vis[v] = true;
if (mat[v] == 0 || cross_path(mat[v])){
mat[v] = u;
mat[u] = v;
return true;
}
}
}
return false;
}
int hungary(){
MEM(mat, 0);
int match_num = 0;
for (int i = 1; i <= vn; i ++){
MEM(vis, 0);
if (!mat[i] && cross_path(i)){
match_num ++;
}
}
return match_num;
}
void print_edge(){
for (int i = 1; i <= vn; i ++){
for (int j = 0; j < (int)adj[i].size(); j ++){ printf("u = %d v = %d\n", i, adj[i][j]); } } } }match; struct rides{ int begintime, endtime; int x1, y1, x2, y2; }r[MAXV>>1];
int main(){
//freopen("test.in", "r", stdin);
//freopen("test.out", "w", stdout);
int t;
scanf("%d", &t);
while(t --){
int n;
scanf("%d", &n);
match.init(2*n);
REP(i, 0, n){
int hour, minute;
scanf("%d:%d %d %d %d %d", &hour, &minute, &r[i].x1, &r[i].y1, &r[i].x2, &r[i].y2);
r[i].begintime = hour * 60 + minute;
r[i].endtime = r[i].begintime + abs(r[i].x2 - r[i].x1) + abs(r[i].y2 - r[i].y1);
}
REP(i, 0, n) REP(j, 0, n){
if (i == j) continue;
if (abs(r[i].x2 - r[j].x1) + abs(r[i].y2 - r[j].y1) < (r[j].begintime - r[i].endtime)){
match.add_uedge(i, j+n);
}
}
printf("%d\n", n-match.hungary());
}
return 0;
}
[/cpp]
POJ 1422 Air Raid (最小路径覆盖)的更多相关文章
- poj 1422 Air Raid 最少路径覆盖
题目链接:http://poj.org/problem?id=1422 Consider a town where all the streets are one-way and each stree ...
- 【网络流24题----03】Air Raid最小路径覆盖
Air Raid Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Su ...
- POJ 1422 二分图(最小路径覆盖)
Air Raid Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 7278 Accepted: 4318 Descript ...
- (hdu step 6.3.3)Air Raid(最小路径覆盖:求用最少边把全部的顶点都覆盖)
题目: Air Raid Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total ...
- HDU1151 Air Raid —— 最小路径覆盖
题目链接:https://vjudge.net/problem/HDU-1151 Air Raid Time Limit: 2000/1000 MS (Java/Others) Memory L ...
- (step6.3.4)hdu 1151(Air Raid——最小路径覆盖)
题意: 一个镇里所有的路都是单向路且不会组成回路. 派一些伞兵去那个镇里,要到达所有的路口,有一些或者没有伞兵可以不去那些路口,只要其他人能完成这个任务.每个在一个路口着陆了的伞兵可以沿着街去 ...
- hdu 1151 Air Raid 最小路径覆盖
题意:一个城镇有n个路口,m条路.每条路单向,且路无环.现在派遣伞兵去巡逻所有路口,伞兵只能沿着路走,且每个伞兵经过的路口不重合.求最少派遣的伞兵数量. 建图之后的就转化成邮箱无环图的最小路径覆盖问题 ...
- Air Raid(最小路径覆盖)
Air Raid Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 7511 Accepted: 4471 Descript ...
- POJ 1422 Air Raid(二分图匹配最小路径覆盖)
POJ 1422 Air Raid 题目链接 题意:给定一个有向图,在这个图上的某些点上放伞兵,能够使伞兵能够走到图上全部的点.且每一个点仅仅被一个伞兵走一次.问至少放多少伞兵 思路:二分图的最小路径 ...
随机推荐
- codeforces 463D Gargari and Permutations(dp)
题目 参考网上的代码的... //要找到所有序列中的最长的公共子序列, //定义状态dp[i]为在第一个序列中前i个数字中的最长公共子序列的长度, //状态转移方程为dp[i]=max(dp[i],d ...
- uva 11090
I I U P C 2 0 0 6 Problem G: Going in Cycle!! Input: standard input Output: standard output You are ...
- ios图片拉伸两种方法
UIImage *image = [UIImage imageNamed:@"qq"]; 第一种: // 左端盖宽度 NSInteger leftCapWidth = image. ...
- ***百度统计图表Echarts的php实现类,支持柱形图、线形图、饼形图
/** * 百度数据统计图表echart的PHP实现类 * * 原作者: * @author: chenliujin <liujin.chen@qq.com> * @since 2013- ...
- python爬煎蛋妹子图
# python3 # jiandan meizi tu import urllib import urllib.request as req import os import time import ...
- javamail邮件中插入图片
转载 http://duanmumu.blog.163.com/blog/static/1911133502012715104016481/ // TODO Auto-generated method ...
- Zend13.0 +XAMPP3.2.2 调试配置
Zend 调试PHP有3种方式: (1)PHP CLI APPLICATION (2)PHP Web Application (3)PHP UnitTest (1).(2)两种方式配置相似,下图是配置 ...
- BZOJ 1502 月下柠檬树(simpson积分)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1502 题意:给出如下一棵分层的树,给出每层的高度和每个面的半径.光线是平行的,与地面夹角 ...
- FTP命令详解
FTP的命令行格式为:ftp -v -d -i -n -g [主机IP或者主机名],其中 -v显示远程服务器的所有响应信息: -n限制ftp的自动登录,即不使用: .n etrc文件: -d使用调试方 ...
- mac 10.8 编译提示找不到GCC
本机已安装xcode,但是在编译prce时提示找不到GCC,要不安装gcc.pkg ,简单起见,启动xcode->menu->preferences->Dowloads 把里面的co ...