LUCAS 定理
原来一张图就就能证明:C(N,M)%P,p是素数。
简直太炫酷
先膜拜会
#include<iostream>
#include<cstdio>
#include<ctime>
#include<cstring>
#include<cstdlib>
#include<vector>
#define C 240
#define TIME 10
#define LL long long
using namespace std;
LL PowMod(LL a,LL b,LL MOD){
LL ret=1;
while(b){
if(b&1) ret=(ret*a)%MOD;
a=(a*a)%MOD;
b>>=1;
}
return ret;
}
LL fac[100005];
LL Get_Fact(LL p){
fac[0]=1;
for(int i=1;i<=p;i++)
fac[i]=(fac[i-1]*i)%p;
}
LL Lucas(LL n,LL m,LL p){
LL ret=1;
while(n&&m){
LL a=n%p,b=m%p;
if(a<b) return 0;
ret=(ret*fac[a]*PowMod(fac[b]*fac[a-b]%p,p-2,p))%p;
n/=p;
m/=p;
}
return ret;
}
int main(){
int t;
scanf("%d",&t);
while(t--){
LL n,m,p;
scanf("%I64d%I64d%I64d",&n,&m,&p);
Get_Fact(p);
printf("%I64d\n",Lucas(n+m,m,p));
}
return 0;
}
模板
http://blog.csdn.net/acdreamers/article/details/8220787 解释逆元的解法
LUCAS 定理的更多相关文章
- 【HDU 3037】Saving Beans Lucas定理模板
http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...
- CF451E Devu and Flowers (隔板法 容斥原理 Lucas定理 求逆元)
Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds me ...
- 大组合数:Lucas定理
最近碰到一题,问你求mod (p1*p2*p3*……*pl) ,其中n和m数据范围是1~1e18 , l ≤10 , pi ≤ 1e5为不同的质数,并保证M=p1*p2*p3*……*pl ≤ 1e18 ...
- 【BZOJ-4591】超能粒子炮·改 数论 + 组合数 + Lucas定理
4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 95 Solved: 33[Submit][Statu ...
- 组合数取模Lucas定理及快速幂取模
组合数取模就是求的值,根据,和的取值范围不同,采取的方法也不一样. 下面,我们来看常见的两种取值情况(m.n在64位整数型范围内) (1) , 此时较简单,在O(n2)可承受的情况下组合数的计算可以 ...
- hdu 3037 Saving Beans Lucas定理
Saving Beans Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tota ...
- 【BZOJ1951】【SDOI2010】古代猪文 Lucas定理、中国剩余定理、exgcd、费马小定理
Description “在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心……” ——选自猪王国民歌 很久很久以前,在山的那边 ...
- 组合数(Lucas定理) + 快速幂 --- HDU 5226 Tom and matrix
Tom and matrix Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=5226 Mean: 题意很简单,略. analy ...
- HDU 4349 Xiao Ming's Hope lucas定理
Xiao Ming's Hope Time Limit:1000MS Memory Limit:32768KB Description Xiao Ming likes counting nu ...
- HDU3037 Saving Beans(Lucas定理+乘法逆元)
题目大概问小于等于m个的物品放到n个地方有几种方法. 即解这个n元一次方程的非负整数解的个数$x_1+x_2+x_3+\dots+x_n=y$,其中0<=y<=m. 这个方程的非负整数解个 ...
随机推荐
- Microsoft Visual C++ Runtime error解决方法
1: 当出现下图时提示Microsoft Visual C++ Runtime error 2:此时不要关闭该对话框,然后打开任务管理器(Ctrl+Shift+Esc)如下图: 找到Microsoft ...
- List集合实战总结
//构造被分隔的集合 List<object> list = new List<object>(); for (int i = 0; i <= 100; i++) { l ...
- Java 装箱 拆箱
Java 自动装箱与拆箱 ??什么是自动装箱拆箱 基本数据类型的自动装箱(autoboxing).拆箱(unboxing)是自J2SE 5.0开始提供的功能. 一般我们要创建一个类的对象的时候,我 ...
- Java 第四天 Mysql
下载地址 http://dev.mysql.com/downloads/ 社区版是免费的 配置将zip 解压copy到本地,如:C:\mysql-5.6.15-winx64,复制配置文件my-def ...
- USB设备---URB请求快
1.urb 结构体USB 请求块(USB request block,urb)是USB 设备驱动中用来描述与USB 设备通信所用的基本载体和核心数据结构,非常类似于网络设备驱动中的sk_buff 结构 ...
- WPF 多项选择下拉菜单
背景 项目中有一个多项选择筛选的功能, 由于筛选条件太多, 用户又习惯在平板上进行操作, 所以要求我们把checkbox 放到一个combobox里面, 然后checkbox的选项要在combobox ...
- Linux 配置 vimrc
由于熟悉了Windows下利用编译器进行编程,所以在刚刚接触Linux后的编程过程中会感觉其vim编译器的各种不方便编写程序,在逐渐的学习过程中了解到可以通过配置vimrc使得vim编译时类似于VS. ...
- SQL*PLUS下使用AUTOTRACE、sql顾问、实时sql监控
高级SQL优化(三) 常用优化工具 ——<12年资深DBA教你Oracle开发与优化—— 高级SQL优化(一) ——<12年资深DBA教你Oracle开发与优化——性能优化部分 1 aut ...
- Hadoop之Hive自定义函数的陷阱
A left join B, 这个B会连到A. 如<A1,B>, <A2,B>,在处理第一条记录的时候将B.clear(),则第二条记录的B是[]空的这是自定义UDF函数必须注 ...
- c++性能测试
程序分析是以某种语言书写的程序为对象,对其内部的运作流程进行分析.程序分析的目的主要有三点:一是通过程序内部各个模块之间的调用关系,整体上把握程序的运行流程,从而更好地理解程序,从中汲取有价值的内容. ...