题目链接

题意 : 如果两个线段相交就属于同一集合,查询某条线段所属集合有多少线段,输出。

思路 : 先判断与其他线段是否相交,然后合并。

 //
#include <cstdio>
#include <cstring>
#include <iostream>
#include <cmath>
#define eps 1e-8
#define zero(x) (((x) > 0 ? (x) : (-x)) < eps) using namespace std ; struct point
{
double x,y ;
} p[];
struct Line
{
point a;
point b ;
// int num ;
} L[] ;
int father[],numb[],rankk[] ;
int cnt ;
double direction(point p0,point p1,point p2)
{
return (p2.x-p0.x)*(p1.y-p0.y)-(p1.x-p0.x)*(p2.y-p0.y);
} bool on_segment(point p0,point p1,point p2)
{
if((min(p0.x,p1.x)<=p2.x && p2.x<=max(p0.x,p1.x)) && (min(p0.y,p1.y)<=p2.y && p2.y<=max(p0.y,p1.y)))
return true;
return false;
} bool Segment_intersect(point p1,point p2,point p3,point p4)
{
double d1,d2,d3,d4;
d1 = direction(p3,p4,p1);
d2 = direction(p3,p4,p2);
d3 = direction(p1,p2,p3);
d4 = direction(p1,p2,p4);
if(((d1> && d2<)||(d1< && d2>)) && ((d3> && d4<)||(d3<&&d4>)))
return true;
else if((d1== && on_segment(p3,p4,p1)) || (d2== && on_segment(p3,p4,p2)) || (d3== && on_segment(p1,p2,p3)) || (d4== && on_segment(p1,p2,p4)))
return true;
return false;
}
int find_(int x)
{
if(father[x] != x)
father[x] = find_(father[x]) ;
return father[x] ;
} void mergee(int a, int b){
int fx = find_(a);
int fy = find_(b); if (fx != fy){
father[fy] = fx;
numb[fx] += numb[fy];
}
}
void Init()
{
cnt = ;
for(int i=; i<=; i++)
{
numb[i]=;
}
for(int i = ; i < ; i++)
father[i] = i ;
memset(rankk,,sizeof(rankk)) ;
}
int main()
{
int T ,n,ss;
scanf("%d",&T) ;
char s[] ;
while( T--)
{
scanf("%d",&n) ;
Init() ;
for(int i = ; i < n ; i++)
{
scanf("%s",s) ;
if(s[] == 'P')
{
cnt ++ ;
scanf("%lf %lf %lf %lf",&L[cnt].a.x,&L[cnt].a.y,&L[cnt].b.x,&L[cnt].b.y) ;
for(int j = ; j < cnt ; j ++)
if(find_(j) != find_(cnt) && Segment_intersect(L[j].a,L[j].b,L[cnt].a,L[cnt].b))
mergee(j,cnt) ;
}
else
{
scanf("%d",&ss) ;
printf("%d\n",numb[find_(ss)]) ;
}
}
if(T) printf("\n") ;
}
return ;
}

线段非规范相交1

 double cross(point p0,point p1,point p2)
{
return (p2.x-p0.x)*(p1.y-p0.y)-(p1.x-p0.x)*(p2.y-p0.y);
} bool on_segment(point p0,point p1,point p2)
{
if((min(p0.x,p1.x)<=p2.x && p2.x<=max(p0.x,p1.x)) && (min(p0.y,p1.y)<=p2.y && p2.y<=max(p0.y,p1.y)))
return true;
return false;
} bool Segment_intersect(point p1,point p2,point p3,point p4)
{
double d1,d2,d3,d4;
d1 = cross(p3,p4,p1);
d2 = cross(p3,p4,p2);
d3 = cross(p1,p2,p3);
d4 = cross(p1,p2,p4);
if(((d1> && d2<)||(d1< && d2>)) && ((d3> && d4<)||(d3<&&d4>)))
return true;
else if((d1== && on_segment(p3,p4,p1)) || (d2== && on_segment(p3,p4,p2)) || (d3== && on_segment(p1,p2,p3)) || (d4== && on_segment(p1,p2,p4)))
return true;
return false;
}

线段非规范相交2

 double cross(point a, point b, point c)
{
return (a.x-c.x)*(b.y-c.y)-(b.x-c.x)*(a.y-c.y);
} //aa, bb为一条线段两端点 cc, dd为另一条线段的两端点 相交返回true, 不相交返回false
bool intersect(point aa, point bb, point cc, point dd)
{
if ( max(aa.x, bb.x)<min(cc.x, dd.x) )
{
return false;
}
if ( max(aa.y, bb.y)<min(cc.y, dd.y) )
{
return false;
}
if ( max(cc.x, dd.x)<min(aa.x, bb.x) )
{
return false;
}
if ( max(cc.y, dd.y)<min(aa.y, bb.y) )
{
return false;
}
if ( cross(cc, bb, aa)*cross(bb, dd, aa)< )
{
return false;
}
if ( cross(aa, dd, cc)*cross(dd, bb, cc)< )
{
return false;
}
return true;
}

HDU 1558 Segment set (并查集+线段非规范相交)的更多相关文章

  1. hdu 1558 Segment set (并查集)

    Segment set Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Tota ...

  2. hdu 1558 Segment set 计算几何+并查集★

    #include <cstdio> #include <iostream> #include <string.h> using namespace std; ; # ...

  3. UVA1455 - Kingdom(并查集 + 线段树)

    UVA1455 - Kingdom(并查集 + 线段树) 题目链接 题目大意:一个平面内,给你n个整数点,两种类型的操作:road x y 把city x 和city y连接起来,line fnum ...

  4. HDU 1811 拓扑排序 并查集

    有n个成绩,给出m个分数间的相对大小关系,问是否合法,矛盾,不完全,其中即矛盾即不完全输出矛盾的. 相对大小的关系可以看成是一个指向的条件,如此一来很容易想到拓扑模型进行拓扑排序,每次检查当前入度为0 ...

  5. hdu 6200 mustedge mustedge(并查集+树状数组 或者 LCT 缩点)

    hdu 6200 mustedge mustedge(并查集+树状数组 或者 LCT 缩点) 题意: 给一张无向连通图,有两种操作 1 u v 加一条边(u,v) 2 u v 计算u到v路径上桥的个数 ...

  6. 并查集&线段树&树状数组&排序二叉树

    超级无敌巨牛逼并查集(带权并查集)https://vjudge.net/problem/UVALive-4487 带删点的加权并查集 https://vjudge.net/problem/UVA-11 ...

  7. 【Codeforces576E_CF576E】Painting Edges(可撤销并查集+线段树分治)

    题目 CF576E 分析: 从前天早上肝到明天早上qwq其实颓了一上午MC ,自己瞎yy然后1A,写篇博客庆祝一下. 首先做这题之前推荐一道很相似的题:[BZOJ4025]二分图(可撤销并查集+线段树 ...

  8. BZOJ 3910 并查集+线段树合并

    思路: 1. 并查集+线段树合并 记得f[LCA]==LCA的时候 f[LCA]=fa[LCA] 2.LCT(并不会写啊...) //By SiriusRen #include <cstdio& ...

  9. HDU 1558 Segment set( 判断线段相交 + 并查集 )

    链接:传送门 题意:输入一个数 n 代表有 n 组操作,P 是在平面内加入一条线段,Q x 是查询第 x 条线段所在相交集合的线段个数 例如:下图 5 与 1.2 相交,1 与 3 相交,2 与 4 ...

随机推荐

  1. 学长们的求职血泪史(C/C++/JAVA)

    以下分三个方向讲解,每个方向都是一个学长独自撰稿. (一)  C语言篇 C语言求职血泪史 华为(实习):机试.一面.性格测试被鄙视.优招被鄙视.普招被鄙视 锐捷:笔试.面试莫名其妙被鄙视 创新工场:笔 ...

  2. hdu 3549 Flow Problem

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=3549 Flow Problem Description Network flow is a well- ...

  3. C++ json库jsoncpp 吐槽

    Explain 最近在做游戏接入SDK时用到C++的json库jsoncpp,jsoncpp 是一款优秀的json库,但恶心的一点是它采用Assert作为错误处理方法,而assert在linux下通过 ...

  4. MongoDB学习笔记-数据格式及数据类型

    JSON JSON是一种简单的数据表示方式,它易于理解.易于解析.易于记忆.但从另一方面来说,因为只有null.布尔.数字.字符串.数组和对象这几种数据类型,所以JSON有一定局限性.例如,JSON没 ...

  5. HTML QQ聊天代码 简单的一行代码

    简单的一行代码: <a href="tencent://message/?uin=173007740&Site=&Menu=yes">和17300774 ...

  6. OpenGl学习笔记3之模型变换、视图变换、投影变换、视口变换介绍

    模型变换.视图变换.投影变换.视口变换介绍 opengl中存在四种变换,分别是模型变换,视图变换,投影变换,视口变换.这四种变换是图形渲染的基本操作,实质上这四种变换都是由矩阵乘法表示(这些操作都是由 ...

  7. comparing-html5-mobile-ui-frameworks

    http://html5hub.com/comparing-html5-mobile-ui-frameworks/

  8. C++输出四则运算设计题的思路

    一,(1)题目避免重复:使用srand(seed)函数进行随机化,随seed的不同,可以产生不同的随机数二,(1)控制数量:输入变量n控制三,(1)控制是否有乘除:(chengchu=0,没有乘除:c ...

  9. 一些 Shell 脚本(持续更新)

    1. 启动日志分析 启动日志格式如下: 开机时间:2015/05/13 周三 16:45:17.79 关机时间:2015/05/13 周三 18:46:03.91 开机时间:2015/05/14 周四 ...

  10. 04.Hibernate一对一关联

        前言:本文主要介绍使用Hibernate映射一对一的关联关系的两种方式:使用外键映射.使用主键映射. 1.数据库表的一对一关联关系     本文根据客户信息表(tb_customer)和地址信 ...