首先我们知道,对于所有种情况,我们可以将每一位可以放的

数的值加起来,所有位置的乘起来,等于的就是最后的答案,具体

为什么正确,可以根据乘法分配律来想一想。

那么对于所有不做要求的,快速幂直接算就行了,然后快排下,就知道

每个位置不放那些值,减掉后乘进去就行了。

/**************************************************************
Problem:
User: BLADEVIL
Language: Pascal
Result: Accepted
Time: ms
Memory: kb
****************************************************************/ //By BLADEVIL
const
d39 =; var
n, m, k :longint;
a, b :array[..] of longint;
ans :int64; procedure swap(var a,b:longint);
var
c :longint;
begin
c:=a; a:=b; b:=c;
end; procedure qs(low,high:longint);
var
i, j, xx, yy :longint;
begin
i:=low; j:=high;
xx:=a[(i+j) div ]; yy:=b[(i+j) div ];
while i<j do
begin
while (a[i]<xx) or (a[i]=xx) and (b[i]<yy) do inc(i);
while (a[j]>xx) or (a[j]=xx) and (b[j]>yy) do dec(j);
if i<=j then
begin
swap(a[i],a[j]);
swap(b[i],b[j]);
inc(i); dec(j);
end;
end;
if i<high then qs(i,high);
if j>low then qs(low,j);
end; procedure init;
var
i :longint;
begin
read(n,m,k);
for i:= to k do read(a[i],b[i]);
qs(,k);
end; function mi(a,b:int64):int64;
var
sum :int64;
begin
sum:=a;
mi:=;
while b<> do
begin
if b mod = then mi:=mi*sum mod d39;
sum:=sum*sum mod d39;
b:=b div ;
end;
end; procedure main;
var
i :longint;
sum, x, y, z :int64;
begin
sum:=m;
x:=-;
for i:= to k do
begin
if a[i]<>x then
begin
dec(sum);
x:=a[i];
end;
end;
x:=n; y:=n+;
if x mod = then x:=x div else y:=y div ;
x:=x mod d39;
y:=y mod d39;
x:=x*y mod d39;
ans:=mi(x,sum);
for i:= to k do if (a[i]=a[i-]) and (b[i]=b[i-]) then b[i-]:=;
y:=-;
z:=-;
for i:= to k do
begin
if a[i]<>y then
begin
if i<> then ans:=ans*z mod d39;
z:=x;
y:=a[i];
z:=((x-b[i]) mod d39+d39) mod d39;
end else z:=((z-b[i])mod d39+d39) mod d39;
end;
if z<>- then ans:=ans*z mod d39;
writeln(ans);
end; begin
init;
main;
end.

bzoj 2751 快速幂的更多相关文章

  1. BZOJ 2751 容易题(easy) 快速幂+快速乘

    2751: [HAOI2012]容易题(easy) Description 为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下:有一个数列A已知对于所有的A[i] ...

  2. BZOJ 2326: [HNOI2011]数学作业( 矩阵快速幂 )

    BZOJ先剧透了是矩阵乘法...这道题显然可以f(x) = f(x-1)*10t+x ,其中t表示x有多少位. 这个递推式可以变成这样的矩阵...(不会用公式编辑器...), 我们把位数相同的一起处理 ...

  3. BZOJ.4818.[SDOI2017]序列计数(DP 快速幂)

    BZOJ 洛谷 竟然水过了一道SDOI!(虽然就是很水...) 首先暴力DP,\(f[i][j][0/1]\)表示当前是第\(i\)个数,所有数的和模\(P\)为\(j\),有没有出现过质数的方案数. ...

  4. BZOJ 3160: 万径人踪灭 FFT+快速幂+manacher

    BZOJ 3160: 万径人踪灭 题目传送门 [题目大意] 给定一个长度为n的01串,求有多少个回文子序列? 回文子序列是指从原串中找出任意个,使得构成一个回文串,并且位置也是沿某一对称轴对称. 假如 ...

  5. [BZOJ 1297][SCOI 2009]迷路(矩阵快速幂)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1297 分析:如果每条边的边权都是1,那么就相当于对邻接矩阵自乘T次(因为写一下递推式子 ...

  6. 【BZOJ】1008: [HNOI2008]越狱(快速幂)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1008 刚开始看不会做啊,以为是dp,但是数据太大!!!所以一定有log的算法或者O1的算法,,,,还 ...

  7. bzoj 2242: [SDOI2011]计算器 BSGS+快速幂+扩展欧几里德

    2242: [SDOI2011]计算器 Time Limit: 10 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description 你被 ...

  8. bzoj 3240: [Noi2013]矩阵游戏 矩阵乘法+十进制快速幂+常数优化

    3240: [Noi2013]矩阵游戏 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 613  Solved: 256[Submit][Status] ...

  9. BZOJ 4000: [TJOI2015]棋盘( 状压dp + 矩阵快速幂 )

    状压dp, 然后转移都是一样的, 矩阵乘法+快速幂就行啦. O(logN*2^(3m)) ------------------------------------------------------- ...

随机推荐

  1. Android照相机应用

    前言 Android在设计架构的时候,采用了mashup(混搭)的设计理念,也就是说一切都是组建,自己写的是组件,别人提供的也是组件,使用的时候只要符合相关协议就可以把他们当作自己的组件.比如系统提供 ...

  2. apache和IIS共享80端口问题

    使用apache代理功能和IIS共享80端口的解决办法. 第一步:把iis所发布的网站默认端口由80改为8080: 第二步:修改apache的httpd.conf配置文件.  首先,要让apache支 ...

  3. js根据日期获得星期

    var weekday = getWeekday('2013-9-26'); function getWeekday(sDate){ var dt = new Date(sDate.replace(/ ...

  4. 【FitNess】测试框架试用

    参考网友的博客http://blog.csdn.net/funi16/article/details/8985280 1.官网下载jar包fitnesse-standalone.jar后安装. 2.进 ...

  5. 第六章 管理类型(In .net4.5) 之 创建类型

    1. 概述 本章内容包括 C#5中如何更好的创建类型以及如何扩展现有类型. 2. 主要内容 2.1 如何选择类型 C#类型系统包括三种类型:值类型.引用类型.指针类型.(指针类型用于非托管代码,很少使 ...

  6. Python学习教程(learning Python)--2.3.1 Python传参函数设计

    本节主要讨论设计传递多个参数子函数的设计方法. 在2.3节里我们讨论了如何自己设计一个带参数的子函数的设计方法,现在我们研究一下如何传递两个及以上参数的设计方法. 函数为何要带参数呢?其实原因很简单, ...

  7. C语言 将产生的随机数存入数组,数据不能相同

    1.定义一个一维数,数组大小为24. 2.产生0~23的随机数. 3.将产生的随机数存入i数组,要求数组中的每个数据不能相同. 4.补充说明,这个子程序要求每次调用后,这个数组里面就 存放了0~23这 ...

  8. Lambda前世今生

    1.学习资料 匿名函数 C#编程指南http://msdn.microsoft.com/zh-cn/library/bb882516.aspx Lambda表达式 C#编程指南http://msdn. ...

  9. Oracle12C的EM无法访问怎么办?

    装完Oracle 12c,想体验下EM Express,缺发现不能用,应该怎么办?12c的EM 不再像以前版本配置那么麻烦,当然提供的功能也没有那么多了,只需要启用对应端口即可,请看:To manua ...

  10. 使用IC框架开发跨平台App的备忘录123

    1,关于图标与启动屏幕 icon.png 192x192splash.png 2208x2208 将这两个图片放在resources目录下,在终端执行:ionic resources --iocn - ...