贪心/可并堆


  跪了……我这么弱果然还是应该回家种红薯去……

  考虑选人的时候,每个人对答案的贡献其实是一样的,都是1,那么我们就贪心地去选花钱少的就好啦~

  具体的做法:倒着枚举(因为有b[i]<i),考虑选第 i 个人做领导者的时候,以他为根的子树中如果花费>m,那么我们就踢掉花钱最多的人,直到sum<m,用l[i]*num[i]更新答案(num[i]表示以 i 为根的子树中选了多少人),然后把这棵子树的堆并到他的父亲的堆中去(初始每个人的堆都只有他自己)

  或许你看看代码更容易理解一点……

  总之就是枚举领导者,属下能多选就多选,不能选的时候踢掉花钱最多的那个

  当然这题只要是支持快速合并以及删除最大值的数据结构都可以的……比如用splay/treap+启发式合并也可以捉,嗯我写的是左偏树……

 /**************************************************************
Problem: 2809
User: Tunix
Language: C++
Result: Accepted
Time:948 ms
Memory:7528 kb
****************************************************************/ //BZOJ 2809
#include<vector>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define rep(i,n) for(int i=0;i<n;++i)
#define F(i,j,n) for(int i=j;i<=n;++i)
#define D(i,j,n) for(int i=j;i>=n;--i)
#define pb push_back
using namespace std;
inline int getint(){
int v=,sign=; char ch=getchar();
while(ch<''||ch>''){ if (ch=='-') sign=-; ch=getchar();}
while(ch>=''&&ch<=''){ v=v*+ch-''; ch=getchar();}
return v*sign;
}
const int N=,INF=~0u>>;
typedef long long LL;
/******************tamplate*********************/
LL n,m,b[N],c[N],l[N],rt[N];
LL ans=;
struct node{
int v,l,r,dis,f,num; LL sum;
node(int v=,int l=,int r=,int dis=,
int f=,int num=,LL sum=):
v(v),l(l),r(r),dis(dis),
f(f),num(num),sum(sum){}
};
struct Left_tree{
node t[N];
int merge(int x,int y){
if(!x||!y) return x?x:y;
if (t[x].v<t[y].v) swap(x,y);
t[x].r=merge(t[x].r,y);
// t[t[x].r].f=x;
if (t[t[x].l].dis<t[t[x].r].dis) swap(t[x].l,t[x].r);
if (t[x].r==) t[x].dis=;
else t[x].dis=t[t[x].r].dis+;
t[x].sum=t[t[x].l].sum+t[t[x].r].sum+t[x].v;
t[x].num=t[t[x].l].num+t[t[x].r].num+;
return x;
}
int pop(int x){
int l=t[x].l,r=t[x].r;
// t[l].f=l; t[r].f=r;
t[x].l=t[x].r=t[x].dis=;
return merge(l,r);
}
void init(){
n=getint();m=getint();
F(i,,n){
b[i]=getint();
t[i].sum=t[i].v=getint();
l[i]=getint(); t[i].num=;
rt[i]=i;
}
D(i,n,){
while(t[rt[i]].sum>m) rt[i]=pop(rt[i]);
if (t[rt[i]].num*l[i]>ans) ans=t[rt[i]].num*l[i];
if (rt[i] && b[i]) rt[b[i]]=merge(rt[b[i]],rt[i]);
}
printf("%lld\n",ans);
}
}H;
int main(){
#ifndef ONLINE_JUDGE
freopen("2809.in","r",stdin);
freopen("2809.out","w",stdout);
#endif
H.init();
return ;
}

【BZOJ】【2809】【APIO2012】派遣dispatching的更多相关文章

  1. BZOJ 2809: [Apio2012]dispatching( 平衡树 + 启发式合并 )

    枚举树上的每个结点做管理者, 贪心地取其子树中薪水较低的, 算出这个结点为管理者的满意度, 更新答案. 用平衡树+启发式合并, 时间复杂度为O(N log²N) ------------------- ...

  2. bzoj 2809: [Apio2012]dispatching -- 可并堆

    2809: [Apio2012]dispatching Time Limit: 10 Sec  Memory Limit: 128 MB Description 在一个忍者的帮派里,一些忍者们被选中派 ...

  3. BZOJ 2809 APIO2012 dispatching Treap+启示式合并 / 可并堆

    题目大意:给定一棵树,选定一棵子树中的一些点,薪水和不能超过m,求点的数量*子树根节点的领导能力的最大值 考虑对于每一个节点,我们维护一种数据结构,在当中贪心寻找薪金小的雇佣. 每一个节点暴力重建一定 ...

  4. BZOJ 2809: [Apio2012]dispatching(左偏树)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2809 题意: 思路:最简单的想法就是枚举管理者,在其子树中从薪水低的开始选起,但是每个节点都这样处理 ...

  5. BZOJ 2809 [Apio2012]dispatching(斜堆+树形DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2809 [题目大意] 给出一棵树,求出每个点有个权值,和一个乘算值,请选取一棵子树, 并 ...

  6. bzoj 2809: [Apio2012]dispatching

    #include<cstdio> #include<algorithm> #define M 1000005 using namespace std; long long an ...

  7. BZOJ 2809: [Apio2012]dispatching [斜堆]

    题意:主席树做法见上一题 我曾发过誓再也不写左偏树(期末考试前一天下午5个小时没写出棘手的操作) 于是我来写斜堆啦 从叶子往根合并,维护斜堆就行了 题目连拓扑序都给你了... 说一下斜堆的操作: 合并 ...

  8. BZOJ 2809: [Apio2012]dispatching [主席树 DFS序]

    传送门 题意:查询树上根节点值*子树中权值和$\le m$的最大数量 最大值是多少 求$DFS$序,然后变成区间中和$\le m$最多有几个元素,建主席树,然后权值线段树上二分就行了 $WA$:又把边 ...

  9. bzoj 2809: [Apio2012]dispatching【dfs序+主席树】

    可并堆就可以,但是想复健一下主席树. 考虑枚举管理者,然后选忍者的时候在子树中贪心的从小到大选.做成dfs序就是选区间内和小于等于k的最多点.可以用主席树,查询的时候在主席树上二分即可 这里注意,为了 ...

  10. BZOJ 2809: [Apio2012]dispatching(可并堆 左偏树板题)

    这道题只要读懂题目一切好说. 给出nnn个点的一棵树,每一个点有一个费用vvv和一个领导力aaa,给出费用上限mmm.求下面这个式子的最大值ax∗∣S∣ ( S⊂x的子树, ∑iv[i]≤m )\la ...

随机推荐

  1. HTML5 对于手机页面长按会粘贴复制的禁用 (解决方案)

    解决方案: 直接在CSS 文件中添加下面的代码,就可以实现了在手机端禁止粘贴复制的功能: *{    -webkit-touch-callout:none;  /*系统默认菜单被禁用*/    -we ...

  2. 【转】DCC32的参数详解

    完整的内容如下: // DCC32编译器的设置说明. // Dcc32 [options] filename [options] // DCC32 [操作选项] 文件名称 [操作选项] // -A&l ...

  3. 【转】Doscommand-操作Cmd的第三方控件

    核心用法: Doscommand1.CommandLine := 'cmd /c' +[命令];Doscommand1.OutputLines :=Memo1.Lines;Doscommand1.Ex ...

  4. udev/raw/asmlib/多路径 配置asm

    asmlib 是linux上面给磁盘/分区头上面打上asm的标记,供asm使用,而且当磁盘的盘符发生改变的时候,不会影响到asm disk,从效果上说,和udev没有本质区别,在redhat 4和5中 ...

  5. yhd日志分析(二)

    yhd日志分析(二) 继续yhd日志分析,统计数据 日期 uv pv 登录人数 游客人数 平均访问时长 二跳率 独立ip数 1 分析 登录人数 count(distinct endUserId) 游客 ...

  6. Learning Scrapy笔记(三)- Scrapy基础

    摘要:本文介绍了Scrapy的基础爬取流程,也是最重要的部分 Scrapy的爬取流程 Scrapy的爬取流程可以概括为一个方程式:UR2IM,其含义如下图所示 URL:Scrapy的运行就从那个你想要 ...

  7. 在MAC OS 下配置python + Flask ,并支持pyCharm编辑器

    原创咯- flask是一个micro framework ,伸缩性很强.可以部署到openshift 的PAAS里.这个框架上手非常快.喜欢的可以试试. 若实在MAC里,python已经默认安装了.1 ...

  8. DataGridView的DataGridViewCheckBox问题

    datagridview有一列DataGridViewCheckBox,但连续点击的话(1秒点击N次),会导致出错,数据处理不正确,感觉 private void dgv_CellContentCli ...

  9. uva 11922 Permutation Transforme/splay tree

    原题链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=18902 伸展树的区间翻转剪切... 如下: #include< ...

  10. ASP.NET浏览器定义文件及IE兼容模式

    由于ASP.NET4.0中的一个小bug,导致了ASP.NET WebForms控制的CallBack无效,部分控件无法使用. 解决方法是在项目中添加自定义的浏览器定义文件,参考这里:http://w ...