time limit per test

6 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

The famous sculptor Cicasso is a Reberlandian spy!

These is breaking news in Berlandian papers today. And now the sculptor is hiding. This time you give the shelter to the maestro. You have a protected bunker and you provide it to your friend. You set the security system in such way that only you can open the bunker. To open it one should solve the problem which is hard for others but is simple for you.

Every day the bunker generates a codeword s. Every time someone wants to enter the bunker, integer n appears on the screen. As the answer one should enter another integer — the residue modulo 109 + 7 of the number of strings of length n that consist only of lowercase English letters and contain the string s as the subsequence.

The subsequence of string a is a string b that can be derived from the string a by removing some symbols from it (maybe none or all of them). In particular any string is the subsequence of itself. For example, the string "cfo" is the subsequence of the string "codeforces".

You haven't implemented the algorithm that calculates the correct answers yet and you should do that ASAP.

Input

The first line contains integer m (1 ≤ m ≤ 105) — the number of the events in the test case.

The second line contains nonempty string s — the string generated by the bunker for the current day.

The next m lines contain the description of the events. The description starts from integer t — the type of the event.

If t = 1 consider a new day has come and now a new string s is used. In that case the same line contains a new value of the string s.

If t = 2 integer n is given (1 ≤ n ≤ 105). This event means that it's needed to find the answer for the current string s and the value n.

The sum of lengths of all generated strings doesn't exceed 105. All of the given strings consist only of lowercase English letters.

Output

For each query of the type 2 print the answer modulo 109 + 7 on the separate line.

Example
Input
3
a
2 2
1 bc
2 5
Output
51
162626
Note

In the first event words of the form "a?" and "?a" are counted, where ? is an arbitrary symbol. There are 26 words of each of these types, but the word "aa" satisfies both patterns, so the answer is 51.

题意:

输入一个数q<=10^5,和一个字符串str,所有字符串都只包含小写英文字母

接下来有q个操作:

1 str 把原来的字符串替换成新的字符串

2 n

求:长度为n的,str为其的子串(不用连续)的字符串的个数 % (1e9+7)

保证所有输入的字符串的长度之和 <= 10^5

solution:

首先,这一道题在计数的时候要注意重复的情况

先计算所有,再减去重复的情况?这样太难算了

这道题相当于要填一个长度为n的字符串,使得包含str这个子串

考虑要避免重复,需要具有以下性质:

设长度为n的字符串为t

若t[i]是从str[j]这里拿的,t[i+k]是从str[j+1]拿的,则区间[i+1,i+k-1]这一段不能出现str[j+1]

则可以避免重复

令f(i,j)表示t填写了i个字符,此时指向str的第j个数的方案数

init:f(0,0) = 1

f(i,j) += f(k,j-1) * 25^(i-k-1)

明显复杂度太大了O(n^3)

但是从这一个递推我们发现,方案数只与str的长度len有关,与str的内容没有关系

这样的话,只要一个三元组(len,n,t)即可确定一个答案了

(其实是2元组(len,n),t是用来离线的时候确定第t个询问的)

则可以推出公式,对于一个三元组(len,n,t):

ans = sigma(C(x-1,len-1) * 25^(x-len) * 26^(n-x)), len <= x <= n

如果预处理:

jie[i] = i!

inv[i] = i!的关于mod的逆元 = qp(jie[i],mod-2)

则一次询问可以在O(n)的时间内得到答案,总复杂度O(n^2)还是不够

考虑离线,先len小到大,n小到大排序询问

则相同的len的元组都放在了一起

对于当前的len:

令f[i]表示3元组(len,i,t)的答案,把公式写成递推的形式:

f[i] = 0 ,i < len

f[i]= 1, i = len

f[i] = 26 * f[i-1] + C(i-1,len-1) * 25^(i-len)  (组合数C可以O(1))

则可以在O(n)的时间内对当前的len求出n=[1,MAXN-1]的答案,

则可以同时处理掉一大批询问了

对于len发生了变化的询问,只需要再更新一次f数组即可

因为有所有输入的字符串的长度之和 <= 10^5,所以最坏的情况下,输入的字符串的长度分别为

1,2,3,...,ma,则 (1+ma)*ma/2 <= 10^5,则ma的规模是在O(sqrt(n))的,

即是说,最多我们需要更新O(sqrt(n))次f数组,一次更新是O(n)的,所以总复杂度为

O(n^1.5)

这样的复杂度就可以接受了

ps:

刚开始没有预处理逆元,所以求组合数C要O(logn),总复杂度O(n^1.5 * logn),TLE了

代码:

   //File Name: cf666C.cpp
//Author: long
//Mail: 736726758@qq.com
//Created Time: 2016年05月20日 星期五 14时28分15秒 #include <stdio.h>
#include <string.h>
#include <algorithm>
#include <iostream> #define LL long long using namespace std; const int MAXN = + ;
const int MOD = (int)1e9 + ; LL jie[MAXN], p25[MAXN],inv[MAXN];
LL f[MAXN],ans[MAXN]; struct Query{
int len,n,t;
Query(int _len = ,int _n = ,int _t = ){
len = _len,n = _n,t = _t;
}
bool operator < (const Query & a) const{
if(len == a.len)
return n < a.n;
return len < a.len;
}
}q[MAXN]; LL qp(LL x,LL y){
LL res = ;
while(y){
if(y & ) res = res * x % MOD;
x = x * x % MOD;
y >>= ;
}
return res;
} void init(){
jie[] = ;
for(int i=;i<MAXN;i++)
jie[i] = jie[i-] * i % MOD;
p25[] = ;
for(int i=;i<MAXN;i++){
p25[i] = p25[i-] * % MOD;
}
for(int i=;i<MAXN;i++)
inv[i] = qp(jie[i],MOD - );
} LL get_c(LL x,LL y){
if(x < || x < y) return ;
if(y == || y == x) return ;
return jie[x] * inv[y] % MOD * inv[x-y] % MOD;
} char str[MAXN]; void update(int len,int N){
for(int i=;i<len;i++)
f[i] = ;
f[len] = ;
for(int i=len+;i<=N;i++){
f[i] = f[i-] * % MOD + get_c(i-,len-) * p25[i-len] % MOD;
f[i] %= MOD;
}
} void solve(int tot){
init();
sort(q,q+tot);
int pre = -;
for(int i=;i<tot;i++){
if(q[i].len == pre){
ans[q[i].t] = f[q[i].n];
}
else{
pre = q[i].len;
int now = i;
while(now < tot - && q[now+].len == q[now].len){
now++;
}
update(pre,q[now].n);
ans[q[i].t] = f[q[i].n];
}
}
for(int i=;i<tot;i++)
printf("%d\n",(int)ans[i]);
} int main(){
int op,len,tot = ;
scanf("%d",&op);
scanf("%s",str);
len = strlen(str);
for(int i=,u,n;i<=op;i++){
scanf("%d",&u);
if(u == ){
scanf("%s",str);
len = strlen(str);
}
else{
scanf("%d",&n);
q[tot] = Query(len,n,tot);
tot++;
}
}
solve(tot);
return ;
}

cf666 C. Codeword 组合数学 离线分块思想的更多相关文章

  1. cf666 C. Codeword 组合数学

    题解: 首先暴力很显然 f[i][j]表示到第i个位置,串匹配到j 这样每次是n^2的 我们假设每个位置匹配的第一个位置 然后从这个到上一个位置一定不能等于这个串的值 ans=simga{i,C(i- ...

  2. Codeforces Round #319 (Div. 1)C. Points on Plane 分块思想

                                                                              C. Points on Plane On a pl ...

  3. hdu6333 Harvest of Apples 离线+分块+组合数学(求组合数模板)

    Problem B. Harvest of Apples Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K ...

  4. Codeforces Beta Round #80 (Div. 1 Only) D. Time to Raid Cowavans 离线+分块

    题目链接: http://codeforces.com/contest/103/problem/D D. Time to Raid Cowavans time limit per test:4 sec ...

  5. 莫队算法 sqrt(n)分块思想

    在此说一下本渣对莫队算法思想的一些浅薄理解 莫队算法的思想就是对真个区间的分块,然后按照每块来分别进行计算,这样最终的复杂度可以达到n*sqrt(n) 小Z的袜子是一道非常经典的题目.:题目链接htt ...

  6. ZOJ 1654 Place the Robots建图思维(分块思想)+二分匹配

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=654 AC一百道水题,不如AC一道难题来的舒服. 题意:一个n*m地图 ...

  7. PAT1057 stack(分块思想)

    1057 Stack (30分)   Stack is one of the most fundamental data structures, which is based on the princ ...

  8. HDOJ 4858 项目管理 ( 只是有点 莫队的分块思想在里面而已啦 )

    题目: 链接:http://acm.hdu.edu.cn/showproblem.php?pid=4858 题意: 我们建造了一个大项目!这个项目有n个节点,用很多边连接起来,并且这个项目是连通的! ...

  9. [BZOJ 2957]楼房重建(THU2013集训)(分块思想)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2957 分析: 首先明确问题,对于每栋楼房的斜率K=H/X,问题就是问有多少个楼房的K比前面所有 ...

随机推荐

  1. Codeforces378 D Kostya the Sculptor(贪心)(逻辑)

    Kostya the Sculptor time limit per test 3 seconds memory limit per test 256 megabytes input standard ...

  2. zoj3261 带权并查集

    题意:有很多颗星球,各自有武力值,星球间有一些联系通道,现在发生战争,有一些联系通道会被摧毁,而一些星球会通过还没有被摧毁的联系通道直接或者间接联系能够联系到的武力值最高的星球求救,如果有多个武力值都 ...

  3. 黑马程序员——JAVA基础之抽象和接口 , 模版方法设计模式

    ------- android培训.java培训.期待与您交流! ---------- 抽象定义:           抽象就是从多个事物中将共性的,本质的内容抽取出来.           例如:狼 ...

  4. ViewPager动态加载、删除页面

    很多人在网上说ViewPager的PagerAdapter.notifyDataSetChanged()无效.刚开始我也这样认为,甚至被误导以为是真理.   后来,找了一下,在PagerAdatpar ...

  5. RESTful架构

    RESTful架构 1.什么是RESTful API设计原则 REST是Representational State Transfer的简写,意为“表现层状态转换” 是一种对资源状态进行操作的设计规则 ...

  6. linux服务之httpd

    http://mirrors.cnnic.cn/apache/httpd/docs/ 英文pdf文档下载 Apache HTTP Project’s goal It is the Apache HTT ...

  7. prtg

    prtg http://www.paessler.com/prtg/features prtg的sensor技术 数据库监视 Flexible Alerting 9 notification tech ...

  8. unity, 由5.2.1f1升级到5.3.5f1,2d物理不正常解法

    由5.2.1f1升级到5.3.5f1,物理不正常. 最后发现问题出在我的游戏中的下面一段代码:   Vector2 targetPosition=...;   Vector2 targetVeloci ...

  9. OpenJudge计算概论-配对碱基链

    /*===================================== 配对碱基链 总时间限制: 1000ms 内存限制: 65536kB 描述 脱氧核糖核酸(DNA)由两条互补的碱基链以双螺 ...

  10. 【转】VS2012程序打包部署详解

    上篇博客把收费系统的总体设计进行了一遍讲解,讲解的同时掺杂了些有关.NET编译机制的总结.程序编写测试完成后接下来我们要做的是打包部署程序,但VS2012让人心痛的是没有了打包工具.不知道出于什么原因 ...