Sliding Window Matrix Maximum
Description
n * m
matrix, and a moving matrix window (size k * k
), move the window from top left to bottom right at each iteration, find the maximum sum inside the window at each moving.Return 0
if the answer does not exist.
Example
Example 1:
Input:[[1,5,3],[3,2,1],[4,1,9]],k=2
Output:13
Explanation:
At first the window is at the start of the matrix like this
[
[|1, 5|, 3],
[|3, 2|, 1],
[4, 1, 9],
]
,get the sum 11;
then the window move one step forward.
[
[1, |5, 3|],
[3, |2, 1|],
[4, 1, 9],
]
,get the sum 11;
then the window move one step forward again.
[
[1, 5, 3],
[|3, 2|, 1],
[|4, 1|, 9],
]
,get the sum 10;
then the window move one step forward again.
[
[1, 5, 3],
[3, |2, 1|],
[4, |1, 9|],
]
,get the sum 13;
SO finally, get the maximum from all the sum which is 13.
Example 2:
Input:[[10],k=1
Output:10
Explanation:
sliding window size is 1*1,and return 10.
Challenge
O(n^2) time.
思路:
考点:
- 二维前缀和
题解:
- sum[i][j]存储左上角坐标为(0,0),右下角坐标为(i,j)的子矩阵的和。
- sum[i][j] = matrix[i - 1][j - 1] + sum[i - 1][j] + sum[i][j - 1] - sum[i - 1][j - 1];递推求值即可,两部分相加,减去重复计算部分。
- int value = sum[i][j] - sum[i - k][j] -sum[i][j - k] + sum[i - k][j - k];可求得一个k * k大小子矩阵的和。
public class Solution {
/**
* @param matrix: an integer array of n * m matrix
* @param k: An integer
* @return: the maximum number
*/
public int maxSlidingMatrix(int[][] matrix, int k) {
// Write your code here
int n = matrix.length;
if (n == 0 || n < k)
return 0;
int m = matrix[0].length;
if (m == 0 || m < k)
return 0; int[][] sum = new int[n + 1][m + 1];
for (int i = 0; i <= n; ++i) sum[i][0] = 0;
for (int i = 0; i <= m; ++i) sum[0][i] = 0; for (int i = 1; i <= n; ++i)
for (int j = 1; j <= m; ++j)
sum[i][j] = matrix[i - 1][j - 1] +
sum[i - 1][j] + sum[i][j - 1] - sum[i - 1][j - 1]; int max_value = Integer.MIN_VALUE;
for (int i = k; i <= n; ++i)
for (int j = k; j <= m; ++j) {
int value = sum[i][j] - sum[i - k][j] -
sum[i][j - k] + sum[i - k][j - k]; if (value > max_value)
max_value = value;
}
return max_value;
}
}
Sliding Window Matrix Maximum的更多相关文章
- LintCode Sliding Window Matrix Maximum
原题链接在这里:http://www.lintcode.com/zh-cn/problem/sliding-window-matrix-maximum/ 题目: Given an array of n ...
- 239. Sliding Window Maximum
题目: Given an array nums, there is a sliding window of size k which is moving from the very left of t ...
- leetcode面试准备:Sliding Window Maximum
leetcode面试准备:Sliding Window Maximum 1 题目 Given an array nums, there is a sliding window of size k wh ...
- Sliding Window Maximum 解答
Question Given an array of n integer with duplicate number, and a moving window(size k), move the wi ...
- Sliding Window Maximum
(http://leetcode.com/2011/01/sliding-window-maximum.html) A long array A[] is given to you. There is ...
- 【LeetCode】239. Sliding Window Maximum
Sliding Window Maximum Given an array nums, there is a sliding window of size k which is moving fr ...
- Sliding Window Maximum LT239
Given an array nums, there is a sliding window of size k which is moving from the very left of the a ...
- 【刷题-LeetCode】239. Sliding Window Maximum
Sliding Window Maximum Given an array nums, there is a sliding window of size k which is moving from ...
- LeetCode题解-----Sliding Window Maximum
题目描述: Given an array nums, there is a sliding window of size k which is moving from the very left of ...
随机推荐
- GitHub: Oracle RAC Database on Docker 未测试 改天试试
https://github.com/oracle/docker-images/blob/master/OracleDatabase/RAC/OracleRealApplicationClusters ...
- [转帖]nginx学习,看这一篇就够了:下载、安装。使用:正向代理、反向代理、负载均衡。常用命令和配置文件
nginx学习,看这一篇就够了:下载.安装.使用:正向代理.反向代理.负载均衡.常用命令和配置文件 2019-10-09 15:53:47 冯insist 阅读数 7285 文章标签: nginx学习 ...
- SGU 127. Telephone directory --- 模拟
<传送门> 127. Telephone directory time limit per test: 0.25 sec. memory limit per test: 4096 KB C ...
- day04——列表、元组、range
day04 列表 列表--list 有序,可变,支持索引 列表:存储数据,支持的数据类型很多:字符串,数字,布尔值,列表,集合,元组,字典,用逗号分割的是一个元素 id() :获取对象的内存地址 ...
- Docker之dockerfile制作jdk镜像
目的: Dockerfile简介 Dockerfile制作jdk镜像 Dockerfile简介 了解dockerfile之前要先了解Docker基本概念和使用可参考:https://www.cnblo ...
- mysql 复制表结构(包括索引等)、表内容
=============================================== 2019/7/16_第1次修改 ccb_warlock == ...
- maven的setting配置文件中mirror和repository的区别
当maven需要到的依赖jar包不在本地仓库时, 就需要到远程仓库下载 . 这个时候如果mavensetting.xml中配置了镜像 , 而且镜像配置的规则中匹配到目标仓库时 , maven认为目标仓 ...
- An Illustrated Proof of the CAP Theorem
An Illustrated Proof of the CAP Theorem The CAP Theorem is a fundamental theorem in distributed syst ...
- apache中的vhosts的配置。
<VirtualHost *:80>ServerAdmin wangjiemengya@foxmail.comDocumentRoot "E:\wordDocument\www& ...
- sql分页优化
索引优化 注意查询的数据占总数据达到一定量的时候可能导致索引失效.可以用limit或者指定列缩小数据区域可以解决. 以时间orderby排序的limit分页优化 前提用order by分页 limit ...