[LeetCode] 64. 最小路径和 ☆☆☆(动态规划)
描述
给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
说明:每次只能向下或者向右移动一步。
示例:
输入:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
输出: 7
解释: 因为路径 1→3→1→1→1 的总和最小。
解析
由于我们的目的是从左上角到右下角,最小路径和是多少,那我们就定义 dp[i] [j]的含义为:当从左上角走到(i, j) 这个位置时,最下的路径和是 dp[i] [j]。那么,dp[m-1] [n-1] 就是我们要的答案了。
想象以下,要怎么样才能到达 (i, j) 这个位置?由于可以向下走或者向右走,所以有两种方式到达
一种是从 (i-1, j) 这个位置走一步到达
一种是从(i, j - 1) 这个位置走一步到达
不过这次不是计算所有可能路径,而是计算哪一个路径和是最小的,那么我们要从这两种方式中,选择一种,使得dp[i] [j] 的值是最小的,显然有
dp[i] [j] = min(dp[i-1][j],dp[i][j-1]) + arr[i][j];// arr[i][j] 表示网格中的值
初始值:
当 dp[i] [j] 中,如果 i 或者 j 有一个是 0,那么还能使用关系式吗?答是不能的。
因为这个时候把 i - 1 或者 j - 1,就变成负数了,数组就会出问题了,所以我们的初始值是计算出所有的 dp[0] [0….n-1] 和所有的 dp[0….m-1] [0]。这个还是非常容易计算的,相当于图中的最上面一行和左边一列。因此初始值如下:
dp[0] [j] = arr[0] [j] + dp[0] [j - 1]; // 相当于第一行,只能一直往左走
dp[i] [0] = arr[i] [0] + dp[i - 1] [0]; // 相当于第一列,只能一直往下走
代码
public int minPathSum(int[][] grid) {
if (null == grid || grid.length <= 0) {
return 0;
}
int[][] dp = new int[grid.length][grid[0].length];
dp[0][0] = grid[0][0];
for (int i = 1; i < dp.length; i++) {
dp[i][0] = dp[i - 1][0] + grid[i][0];
}
for (int i = 1; i < dp[0].length; i++) {
dp[0][i] = dp[0][i - 1] + grid[0][i];
}
for (int ii = 1; ii < dp.length; ii++) {
for (int kk = 1; kk < dp[0].length; kk++) {
dp[ii][kk] = Math.min(dp[ii - 1][kk], dp[ii][kk - 1]) + grid[ii][kk];
}
}
return dp[grid.length - 1][grid[0].length - 1];
}
[LeetCode] 64. 最小路径和 ☆☆☆(动态规划)的更多相关文章
- leetcode 64. 最小路径和 动态规划系列
目录 1. leetcode 64. 最小路径和 1.1. 暴力 1.2. 二维动态规划 2. 完整代码及执行结果 2.1. 执行结果 1. leetcode 64. 最小路径和 给定一个包含非负整数 ...
- LeetCode 64. 最小路径和(Minimum Path Sum) 20
64. 最小路径和 64. Minimum Path Sum 题目描述 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明: 每次只能向下或 ...
- Java实现 LeetCode 64 最小路径和
64. 最小路径和 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明:每次只能向下或者向右移动一步. 示例: 输入: [ [1,3,1], ...
- LeetCode 64最小路径和
题目 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明:每次只能向下或者向右移动一步. 示例: 输入: [ [1,3,1], [1,5 ...
- Leetcode——64. 最小路径和
题目描述:题目链接 同样对于这个问题,我们可以考虑用动态规划来解决. 解决动态规划常见的三个步骤: 1:问题的归纳.对于 i,j 位置上的最短路径可以用d[ i ][ j ]表示. 2:归纳递推式:d ...
- leetcode 64. 最小路径和Minimum Path Sum
很典型的动态规划题目 C++解法一:空间复杂度n2 class Solution { public: int minPathSum(vector<vector<int>>&am ...
- [LeetCode]64. 最小路径和(DP)
题目 给定一个无序的整数数组,找到其中最长上升子序列的长度. 示例: 输入: [10,9,2,5,3,7,101,18] 输出: 4 解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4 ...
- Leetcode之动态规划(DP)专题-64. 最小路径和(Minimum Path Sum)
Leetcode之动态规划(DP)专题-64. 最小路径和(Minimum Path Sum) 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. ...
- Leetcode题目64.最小路径和(动态规划-中等)
题目描述: 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明:每次只能向下或者向右移动一步. 示例: 输入: [ [1,3,1], [1, ...
随机推荐
- np.meshgrid
- 同时购入两台同款thinkpad笔记本电脑,分别使用同一账户激活office失败--------------解决方法(账户下有多个Office激活信息,重装后提示“许可证不正确或者最大激活次数”)
如题所述,该问题曾多次与京东商城售后,京东thinkpad品牌售后,thinkpad售后等进行沟通,最后通过微软的电话激活才成功,不过在之后发现了这么一个帖子,应该是官方给出的,应该合理,没有实际验证 ...
- 【linux】CentOS: Sudo: unable to initialize policy plugin
背景: 在centos7 下 使用sudo 命令对www用户生成ssh秘钥 .报错 解决办法: yum remove sudo yum install sudo 在执行就ok了
- 【翻译】Flink Table Api & SQL —Streaming 概念 ——时间属性
本文翻译自官网: Time Attributes https://ci.apache.org/projects/flink/flink-docs-release-1.9/dev/table/str ...
- 【curl】certificate is bad 问题解决
参考:https://blog.scottlowe.org/2018/08/20/troubleshooting-tls-certificates/ 我最近正在写一篇博客文章,内容涉及使用TLS证书进 ...
- 流程图软件Microsoft Visio
简介 Visio是一款能处理复杂信息.系统和流程进行可视化.分析和交流的软件,从“office 2003”以后,Visio作为一个单独软件发行,不再集成于office办公软件. 下载安装 官方下载最新 ...
- 微信小程序获取位置
获取位置 getLocation wx.getLocation({ type: 'wgs84', success (res) { const latitude = res.latitude const ...
- java笔记4—继承
继承: 作用: 提高了代码的复用性. 让类与类之间产生了关系,为多态提供了前提 继承中成员变量的特点: 继承中成员函数的特点: 方法重写: 注意:重写方法必须和被重写的方法具有相同的方法名,参数列表和 ...
- Django-02-django的命令行工具
django-admin.py 是Django的一个用于管理任务的命令行工具,manage.py是对django-admin.py的简单包装,每一个Django Project里都会有一个mannag ...
- github中的各种操作
1.上传文件到github 如图,你现在有三个项目在一个文件夹中,我们要把它上传到自己的github仓库中,该怎么做呢? 1.首先右击空白处,点击Git Bash Here,出现命令行 2. git ...