描述

给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

说明:每次只能向下或者向右移动一步。

示例:

输入:
[
  [1,3,1],
[1,5,1],
[4,2,1]
]
输出: 7
解释: 因为路径 1→3→1→1→1 的总和最小。

解析

由于我们的目的是从左上角到右下角,最小路径和是多少,那我们就定义 dp[i] [j]的含义为:当从左上角走到(i, j) 这个位置时,最下的路径和是 dp[i] [j]。那么,dp[m-1] [n-1] 就是我们要的答案了。

想象以下,要怎么样才能到达 (i, j) 这个位置?由于可以向下走或者向右走,所以有两种方式到达

一种是从 (i-1, j) 这个位置走一步到达

一种是从(i, j - 1) 这个位置走一步到达

不过这次不是计算所有可能路径,而是计算哪一个路径和是最小的,那么我们要从这两种方式中,选择一种,使得dp[i] [j] 的值是最小的,显然有

dp[i] [j] = min(dp[i-1][j],dp[i][j-1]) + arr[i][j];// arr[i][j] 表示网格中的值

初始值:

当 dp[i] [j] 中,如果 i 或者 j 有一个是 0,那么还能使用关系式吗?答是不能的。

因为这个时候把 i - 1 或者 j - 1,就变成负数了,数组就会出问题了,所以我们的初始值是计算出所有的 dp[0] [0….n-1] 和所有的 dp[0….m-1] [0]。这个还是非常容易计算的,相当于图中的最上面一行和左边一列。因此初始值如下:

dp[0] [j] = arr[0] [j] + dp[0] [j - 1]; // 相当于第一行,只能一直往左走

dp[i] [0] = arr[i] [0] + dp[i - 1] [0]; // 相当于第一列,只能一直往下走

代码

public int minPathSum(int[][] grid) {
if (null == grid || grid.length <= 0) {
return 0;
}
int[][] dp = new int[grid.length][grid[0].length];
dp[0][0] = grid[0][0];
for (int i = 1; i < dp.length; i++) {
dp[i][0] = dp[i - 1][0] + grid[i][0];
}
for (int i = 1; i < dp[0].length; i++) {
dp[0][i] = dp[0][i - 1] + grid[0][i];
}
for (int ii = 1; ii < dp.length; ii++) {
for (int kk = 1; kk < dp[0].length; kk++) {
dp[ii][kk] = Math.min(dp[ii - 1][kk], dp[ii][kk - 1]) + grid[ii][kk];
}
}
return dp[grid.length - 1][grid[0].length - 1];
}

[LeetCode] 64. 最小路径和 ☆☆☆(动态规划)的更多相关文章

  1. leetcode 64. 最小路径和 动态规划系列

    目录 1. leetcode 64. 最小路径和 1.1. 暴力 1.2. 二维动态规划 2. 完整代码及执行结果 2.1. 执行结果 1. leetcode 64. 最小路径和 给定一个包含非负整数 ...

  2. LeetCode 64. 最小路径和(Minimum Path Sum) 20

    64. 最小路径和 64. Minimum Path Sum 题目描述 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明: 每次只能向下或 ...

  3. Java实现 LeetCode 64 最小路径和

    64. 最小路径和 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明:每次只能向下或者向右移动一步. 示例: 输入: [ [1,3,1], ...

  4. LeetCode 64最小路径和

    题目 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明:每次只能向下或者向右移动一步. 示例: 输入: [   [1,3,1], [1,5 ...

  5. Leetcode——64. 最小路径和

    题目描述:题目链接 同样对于这个问题,我们可以考虑用动态规划来解决. 解决动态规划常见的三个步骤: 1:问题的归纳.对于 i,j 位置上的最短路径可以用d[ i ][ j ]表示. 2:归纳递推式:d ...

  6. leetcode 64. 最小路径和Minimum Path Sum

    很典型的动态规划题目 C++解法一:空间复杂度n2 class Solution { public: int minPathSum(vector<vector<int>>&am ...

  7. [LeetCode]64. 最小路径和(DP)

    题目 给定一个无序的整数数组,找到其中最长上升子序列的长度. 示例: 输入: [10,9,2,5,3,7,101,18] 输出: 4 解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4 ...

  8. Leetcode之动态规划(DP)专题-64. 最小路径和(Minimum Path Sum)

    Leetcode之动态规划(DP)专题-64. 最小路径和(Minimum Path Sum) 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. ...

  9. Leetcode题目64.最小路径和(动态规划-中等)

    题目描述: 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明:每次只能向下或者向右移动一步. 示例: 输入: [ [1,3,1], [1, ...

随机推荐

  1. np.meshgrid

  2. 同时购入两台同款thinkpad笔记本电脑,分别使用同一账户激活office失败--------------解决方法(账户下有多个Office激活信息,重装后提示“许可证不正确或者最大激活次数”)

    如题所述,该问题曾多次与京东商城售后,京东thinkpad品牌售后,thinkpad售后等进行沟通,最后通过微软的电话激活才成功,不过在之后发现了这么一个帖子,应该是官方给出的,应该合理,没有实际验证 ...

  3. 【linux】CentOS: Sudo: unable to initialize policy plugin

    背景: 在centos7 下 使用sudo 命令对www用户生成ssh秘钥 .报错 解决办法: yum remove sudo yum install sudo 在执行就ok了

  4. 【翻译】Flink Table Api & SQL —Streaming 概念 ——时间属性

    本文翻译自官网: Time Attributes   https://ci.apache.org/projects/flink/flink-docs-release-1.9/dev/table/str ...

  5. 【curl】certificate is bad 问题解决

    参考:https://blog.scottlowe.org/2018/08/20/troubleshooting-tls-certificates/ 我最近正在写一篇博客文章,内容涉及使用TLS证书进 ...

  6. 流程图软件Microsoft Visio

    简介 Visio是一款能处理复杂信息.系统和流程进行可视化.分析和交流的软件,从“office 2003”以后,Visio作为一个单独软件发行,不再集成于office办公软件. 下载安装 官方下载最新 ...

  7. 微信小程序获取位置

    获取位置 getLocation wx.getLocation({ type: 'wgs84', success (res) { const latitude = res.latitude const ...

  8. java笔记4—继承

    继承: 作用: 提高了代码的复用性. 让类与类之间产生了关系,为多态提供了前提 继承中成员变量的特点: 继承中成员函数的特点: 方法重写: 注意:重写方法必须和被重写的方法具有相同的方法名,参数列表和 ...

  9. Django-02-django的命令行工具

    django-admin.py 是Django的一个用于管理任务的命令行工具,manage.py是对django-admin.py的简单包装,每一个Django Project里都会有一个mannag ...

  10. github中的各种操作

    1.上传文件到github 如图,你现在有三个项目在一个文件夹中,我们要把它上传到自己的github仓库中,该怎么做呢? 1.首先右击空白处,点击Git Bash Here,出现命令行 2. git ...