You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security system connected and it will automatically contact the police if two adjacent houses were broken into on the same night.

Given a list of non-negative integers representing the amount of money of each house, determine the maximum amount of money you can rob tonight without alerting the police.

Example 1:

Input: [1,2,3,1]
Output: 4
Explanation: Rob house 1 (money = 1) and then rob house 3 (money = 3).
  Total amount you can rob = 1 + 3 = 4.

Example 2:

Input: [2,7,9,3,1]
Output: 12
Explanation: Rob house 1 (money = 2), rob house 3 (money = 9) and rob house 5 (money = 1).
  Total amount you can rob = 2 + 9 + 1 = 12.

Credits:
Special thanks to @ifanchu for adding this problem and creating all test cases. Also thanks to @ts for adding additional test cases.

这道题的本质相当于在一列数组中取出一个或多个不相邻数,使其和最大。那么对于这类求极值的问题首先考虑动态规划 Dynamic Programming 来解,维护一个一位数组 dp,其中 dp[i] 表示 [0, i] 区间可以抢夺的最大值,对当前i来说,有抢和不抢两种互斥的选择,不抢即为 dp[i-1](等价于去掉 nums[i] 只抢 [0, i-1] 区间最大值),抢即为 dp[i-2] + nums[i](等价于去掉 nums[i-1])。再举一个简单的例子来说明一下吧,比如说 nums为{3, 2, 1, 5},那么来看 dp 数组应该是什么样的,首先 dp[0]=3 没啥疑问,再看 dp[1] 是多少呢,由于3比2大,所以抢第一个房子的3,当前房子的2不抢,则dp[1]=3,那么再来看 dp[2],由于不能抢相邻的,所以可以用再前面的一个的 dp 值加上当前的房间值,和当前房间的前面一个 dp 值比较,取较大值当做当前 dp 值,这样就可以得到状态转移方程 dp[i] = max(num[i] + dp[i - 2], dp[i - 1]), 且需要初始化 dp[0] 和 dp[1],其中 dp[0] 即为 num[0],dp[1] 此时应该为 max(num[0], num[1]),代码如下:

解法一:

class Solution {
public:
int rob(vector<int>& nums) {
if (nums.size() <= ) return nums.empty() ? : nums[];
vector<int> dp = {nums[], max(nums[], nums[])};
for (int i = ; i < nums.size(); ++i) {
dp.push_back(max(nums[i] + dp[i - ], dp[i - ]));
}
return dp.back();
}
};

还有一种解法,核心思想还是用 DP,分别维护两个变量 robEven 和 robOdd,顾名思义,robEven 就是要抢偶数位置的房子,robOdd 就是要抢奇数位置的房子。所以在遍历房子数组时,如果是偶数位置,那么 robEven 就要加上当前数字,然后和 robOdd 比较,取较大的来更新 robEven。这里就看出来了,robEven 组成的值并不是只由偶数位置的数字,只是当前要抢偶数位置而已。同理,当奇数位置时,robOdd 加上当前数字和 robEven 比较,取较大值来更新 robOdd,这种按奇偶分别来更新的方法,可以保证组成最大和的数字不相邻,最后别忘了在 robEven 和 robOdd 种取较大值返回,代码如下:

解法二:

class Solution {
public:
int rob(vector<int>& nums) {
int robEven = , robOdd = , n = nums.size();
for (int i = ; i < n; ++i) {
if (i % == ) {
robEven = max(robEven + nums[i], robOdd);
} else {
robOdd = max(robEven, robOdd + nums[i]);
}
}
return max(robEven, robOdd);
}
};

上述方法还可以进一步简洁,我们使用两个变量 rob 和 notRob,其中 rob 表示抢当前的房子,notRob 表示不抢当前的房子,那么在遍历的过程中,先用两个变量 preRob 和 preNotRob 来分别记录更新之前的值,由于 rob 是要抢当前的房子,那么前一个房子一定不能抢,所以使用 preNotRob 加上当前的数字赋给 rob,然后 notRob 表示不能抢当前的房子,那么之前的房子就可以抢也可以不抢,所以将 preRob 和 preNotRob 中的较大值赋给 notRob,参见代码如下:

解法三:

class Solution {
public:
int rob(vector<int>& nums) {
int rob = , notRob = , n = nums.size();
for (int i = ; i < n; ++i) {
int preRob = rob, preNotRob = notRob;
rob = preNotRob + nums[i];
notRob = max(preRob, preNotRob);
}
return max(rob, notRob);
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/198

类似题目:

House Robber II

House Robber III

Maximum Product Subarray

Paint House

Paint Fence

Coin Path

Non-negative Integers without Consecutive Ones

Delete and Earn

参考资料:

https://leetcode.com/problems/house-robber/description/

https://leetcode.com/problems/house-robber/discuss/55681/java-on-solution-space-o1

https://leetcode.com/problems/house-robber/discuss/55693/c-1ms-o1space-very-simple-solution

https://leetcode.com/problems/house-robber/discuss/55695/java-dp-solution-on-runtime-and-o1-space-with-inline-comment

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] 198. House Robber 打家劫舍的更多相关文章

  1. leetcode 198. House Robber 、 213. House Robber II 、337. House Robber III 、256. Paint House(lintcode 515) 、265. Paint House II(lintcode 516) 、276. Paint Fence(lintcode 514)

    House Robber:不能相邻,求能获得的最大值 House Robber II:不能相邻且第一个和最后一个不能同时取,求能获得的最大值 House Robber III:二叉树下的不能相邻,求能 ...

  2. 【LeetCode】198. House Robber 打家劫舍 解题报告(Java & Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 递归 递归 + 记忆化 动态规划 优化动态规划空间 ...

  3. Leetcode 198 House Robber

    You are a professional robber planning to rob houses along a street. Each house has a certain amount ...

  4. Java for LeetCode 198 House Robber

    You are a professional robber planning to rob houses along a street. Each house has a certain amount ...

  5. (easy)LeetCode 198.House Robber

    You are a professional robber planning to rob houses along a street. Each house has a certain amount ...

  6. Java [Leetcode 198]House Robber

    题目描述: You are a professional robber planning to rob houses along a street. Each house has a certain ...

  7. [LeetCode] 198. House Robber _Easy tag: Dynamic Programming

    You are a professional robber planning to rob houses along a street. Each house has a certain amount ...

  8. 198 House Robber 打家劫舍

    你是一个专业的强盗,计划抢劫沿街的房屋.每间房都藏有一定的现金,阻止你抢劫他们的唯一的制约因素就是相邻的房屋有保安系统连接,如果两间相邻的房屋在同一晚上被闯入,它会自动联系警方.给定一个代表每个房屋的 ...

  9. leetcode 198. House Robber (Easy)

    https://leetcode.com/problems/house-robber/ 题意: 一维数组,相加不相邻的数组,返回最大的结果. 思路: 一开始思路就是DP,用一维数组保存dp[i]保存如 ...

随机推荐

  1. 【Linux命令】ulimit设置最大文件打开数

    一.简介 在Linux下有时会遇到Socket/File : Can't open so many files的问题.其实Linux是有文件句柄限制的,而且Linux默认一般都是1024(阿里云主机默 ...

  2. MySQL 合并字段及列转行

    数据表: 列转行:利用max(case when then) max---聚合函数 取最大值 (case course when '语文' then score else 0 end) ---判断   ...

  3. MySQL数据库中查询表的所有列名

    MySQL数据库中: 查询某个数据库中某个表的所有列名 SELECT COLUMN_NAME FROM information_schema.COLUMNS WHERE TABLE_SCHEMA = ...

  4. 第二十一节:Asp.Net Core MVC和WebApi路由规则的总结和对比

    一. Core Mvc 1.传统路由 Core MVC中,默认会在 Startup类→Configure方法→UseMvc方法中,会有默认路由:routes.MapRoute("defaul ...

  5. 微软宣布.NET Native预览版 C#可编译为本地机器码【转】

    英文原文:Announcing .NET Native Preview 微软在 MSDN 博客上宣布了 .NET Native 的开发者预览版..NET Native 可以将 C# 代码编译成本地机器 ...

  6. k8s修改pod的hosts文件

    1.在1.7版本后使用HostAliases修改pod的hosts文件.该文件由kubelet管理 在deployment的yaml文件中添加在pod template 的spec里面即可: apiV ...

  7. Maven快速入门--Idea版

    目录 1.web项目的基本知识 1.1 项目构建 1.1.1传统的构建过程如下: 1.1.2 mavn构建项目 1.2 maven构建项目的优点: 2. 依赖管理 2.1 传统依赖管理 2.1.1 手 ...

  8. office 所有后缀对应的 content-type

    后缀 MIME Type.doc application/msword.dot application/msword.docx application/vnd.openxmlformats-offic ...

  9. 【初识Spring】对象(Bean)实例化及属性注入(注解方式)

    通过xml的方式进行对象的实列化或属性注入或许有一些繁琐,所以在开发中常用的方式更多是通过注解的方式实现对象实例化和属性注入的. 开始之前 1.导入相关的包(除了导入基本的包还要导入aop的包): 创 ...

  10. MySQL之--修改密码

    1.在Mac上安装MySQL会随机生成一个临时密码,如下: --24T02::.004376Z [Note] A temporary password is generated for root@lo ...