在现实的网络中,构成网络的每个节点可能在网络中担任着某种角色。比如社交网络中,经常可以看见一些关注量很高的大V。两个大V在网络中的角色可能相同,因为他们都有很高的关注量;而大V与普通人(仅有几个关注)在网络中的角色则是不同的,这就是所谓的某个节点的结构身份(structural identity)。

常见的一些可以决定某个节点的结构身份的方法有两种。一种是基于距离的方式,通过邻居信息计算每个节点对之间的距离,然后通过聚类、匹配的方式来将结构相似的节点放到一起。另一种是基于递归的方式,就是通过递归的方式将所有邻居的信息聚合得到一个值,根据这个值决定是否是结构相似的。

之前的很多网络表示的工作的思路是利用邻居作为上下文。如果两个节点的共同邻居越多,那么表示这两个节点越相似,自然就要减小他们在嵌入空间中的距离。但是这种方法无法鉴别结构相似但是距离非常远的节点对,换句话说某些节点有着类似的拓扑结构,但是它们离得太远,不可能有共同邻居(就比如下图的u和v)。这种情况是之前很多工作没有考虑到的点。

DeepWalk或node2vec这一类的方法在判断节点的结构是否等价的分类任务上往往并不能取得好的效果。其根本原因在于网络中的节点具有同质性(homohily),即两个节点有边相连是因为它们有着某种十分相似的特征。因此在网络中相距比较近的节点在嵌入空间也比较近,因为他们有着共同的特征;而在网络中相距比较远的节点,则认为它们没有共同特征,因此在嵌入空间的距离也会比较远,尽管两个节点可能在局部的拓扑结构上是相似的。

如果分类任务更看重同质性的特征,那么DeepWalk类的方法自然可以满足要求;但是术业有专攻,如果分类任务是想找出哪些节点的局部拓扑结构是相似的,那么DeepWalk自然就不能胜任了。

graph embedding 之 struc2vec的更多相关文章

  1. graph embedding 使用方法

    无论是network embedding 还是graph embedding都是通过节点(node)和边的图,学出每个节点的embedding向量. 比较流行的算法有: Model Paper Not ...

  2. Graph Embedding Review:Graph Neural Network(GNN)综述

    作者简介: 吴天龙  香侬科技researcher 公众号(suanfarensheng) 导言 图(graph)是一个非常常用的数据结构,现实世界中很多很多任务可以描述为图问题,比如社交网络,蛋白体 ...

  3. 推文《阿里凑单算法首次公开!基于Graph Embedding的打包购商品挖掘系统解析》笔记

    推文<阿里凑单算法首次公开!基于Graph Embedding的打包购商品挖掘系统解析>笔记 从17年5月份开始接触Graph Embedding,学术论文读了很多,但是一直不清楚这技术是 ...

  4. 关于embedding-深度学习基本操作 【Word2vec, Item2vec,graph embedding】

    https://zhuanlan.zhihu.com/p/26306795 https://arxiv.org/pdf/1411.2738.pdf https://zhuanlan.zhihu.com ...

  5. GNN 相关资料记录;GCN 与 graph embedding 相关调研

    最近做了一些和gnn相关的工作,经常听到GCN 和 embedding 相关技术,感觉很是困惑,所以写下此博客,对相关知识进行索引和记录: 参考链接: https://www.toutiao.com/ ...

  6. Graph Embedding总结

    图嵌入应用场景:可用于推荐,节点分类,链接预测(link prediction),可视化等场景 一.考虑网络结构 1.DeepWalk (KDD 2014) (1)简介 DeepWalk = Rand ...

  7. 深度解析Graph Embedding

    Graph Embedding是推荐系统.计算广告领域最近非常流行的做法,是从word2vec等一路发展而来的Embedding技术的最新延伸:并且已经有很多大厂将Graph Embedding应用于 ...

  8. GNN 相关资料记录;GCN 与 graph embedding 相关调研;社区发现算法相关;异构信息网络相关;

    最近做了一些和gnn相关的工作,经常听到GCN 和 embedding 相关技术,感觉很是困惑,所以写下此博客,对相关知识进行索引和记录: 参考链接: https://www.toutiao.com/ ...

  9. 基于图嵌入的高斯混合变分自编码器的深度聚类(Deep Clustering by Gaussian Mixture Variational Autoencoders with Graph Embedding, DGG)

    基于图嵌入的高斯混合变分自编码器的深度聚类 Deep Clustering by Gaussian Mixture Variational Autoencoders with Graph Embedd ...

随机推荐

  1. Flask之基础

    一,flask Flask是一个基于Python开发并且依赖jinja2模板和Werkzeug WSGI服务的一个微型框架,对于Werkzeug本质是Socket服务端,其用于接收http请求并对请求 ...

  2. Nginx配置文件示例

    Nginx的配置文件示例:(仅供参考) 强烈建议先将默认的配置文件备份再进行操作! 请根据自己项目的实际路径来配置相关路径! uwsgi配置文件请参考:uwsgi配置文件示例 # For more i ...

  3. Maven的下载,配置环境,导入编译器,使用说明一条龙

    什么是Maven?可以认为Maven是写程序时导入jar包的一个轻便的工具. 第一步Maven下载   1.Maven(点击进入),点击一个zip包下载      2.解压maven包,复制maven ...

  4. [https][tls] 如何使用wireshark查看tls/https加密消息--使用私钥

    之前总结了使用keylog进行https流量分析的方法: [https][tls] 如何使用wireshark查看tls/https加密消息--使用keylog 今天总结一下使用服务器端证书私钥进行h ...

  5. Linux命令——du

    参考:10 Useful du (Disk Usage) Commands to Find Disk Usage of Files and Directories 前言 du(Disk Usage), ...

  6. HTML5 Canvas 绘制图片不显示的问题

    问题: 慕名赶来,却一脚踩空,低头一看,地上一个大坑. 事情是这样的,在我看完w3c的介绍和很有说服力和教学力的demo后,本着实践出真知的思想决定上手一试,这一试不要紧~ 我按照流水线工程铺设以下几 ...

  7. 03 c++中this指针

    概念: 成员函数:在类中定义的函数.普通函数无法被继承,成员函数可以被继承.友元函数相当于普通函数. 友元函数不是类的组成,没有this指针,必须将成员函数操作符作为参数传递对象. 在c++中成员函数 ...

  8. 关于C3P0-mySQL关于url的细节问题

    1.为url设置?useUnicode=true&characterEncoding=UTF-8 为了统一编码,我们会为数据库封装的实体类加上上面的那句话,但是C3P0数据库连接池是xml配置 ...

  9. URL路径详解

    1.url http://localhost:8080/Test/1.html url表示浏览器访问服务器的网络路径   http:相当于人们交流时候的语言   :// 分隔符   localhost ...

  10. HP DL388 Gen9 Raid P440ar 工具

    HP DL388 Gen9 服务器raid升级P440ar,原先的hpacucli 不能使用,新的工具为hpssacl hpssacli-2.10-14.0.x86_64.rpm 下载地址:wget ...