一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 1 和 0 来表示。

说明:m和n的值不超过100。

示例1:

输入:
[
  [0,0,0],
  [0,1,0],
  [0,0,0]
]
输出: 2
解释:
3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右

解法一: 动态规划

思想算法:

  1. 如果第一个格子点是obstacleGrid[0][0] 是 1, 说明有障碍物,那么机器人就不能做任何的移动,我们就直接返回0;
  2. 否则如果obstacleGrid[0][0] 是 0, 我们初始化这个值为1,然后继续算法;
  3. 遍历第一行,如果有个格子是为1,说明当前节点有障碍物,没有路径可走,设置为0;否则设这个值是前一个节点的值,如下:

    let verticalValue = (obstacleGrid[0][i] == 0 && dp[0][i - 1] == 1) ? 1 : 0

    dp[0].append(verticalValue)

  4. 遍历第一列,如果有一个格子初始值是1, 说明当前节点为障碍物,没有路径可以通过, 设置为0; 否则这个值为前一个节点的值
    (dp[i-1][0]) == 0 || (obstacleGrid[i][0] == 1)判断为0或者1,加入进去
  5. 现在从obstacleGrid[1][1]开始遍历整个数组,如果某个个字初始化不包含任何障碍物,就把值赋予上方和左侧两个格子方案之和
    let value = dp[i - 1][j] + dp[i][j - 1]
    dp[i].append(value)
    不包含障碍物上面.
  6.  如果这个点是障碍物设置为0, 保证对后面的路径不产生贡献.
 
代码如下
func uniquePathsWithObstacles(_ obstacleGrid: [[Int]]) -> Int {
guard obstacleGrid.count > else {return -}
let rowLength = obstacleGrid.count //显示多少行
let verticalLength = obstacleGrid[].count //显示多少列
var dp = [[Int]]()
if obstacleGrid[][] == {//1代表有障碍
return
} //初始化第一个元素,也就是dp[0][0]
var rowArr = [Int]()
for i in ..<rowLength {
if i == {
for j in ..<verticalLength {
if j == {
rowArr.append()
}
}
}
}
dp.append(rowArr) //初始化第一列
for i in ..<rowLength {
var vertical = [Int]()
let rowValue = (obstacleGrid[i][] == && dp[i-][] == ) ? :
for j in ..<verticalLength {
if j == {
vertical.append(rowValue)
}
}
dp.append(vertical)
}
//初始化第一行
for i in ..<verticalLength {
let verticalValue = (obstacleGrid[][i] == && dp[][i - ] == ) ? :
dp[].append(verticalValue)
}
//初始化其它元素
for i in ..<rowLength {
for j in ..<verticalLength {
if obstacleGrid[i][j] == {
let value = dp[i - ][j] + dp[i][j - ]
dp[i].append(value)
} else {
dp[i].append()
}
}
}
return dp[rowLength-][verticalLength-]
}

上面运行代码如下:

上面就是不同路径关于动态规划下,swift完整代码,可以直接运行出来,代码也有注释,以后有新的解法,会持续更新,希望对大家有所帮助!!!

 
 

不同路径II --动态规划的更多相关文章

  1. [LeetCode] 63. 不同路径 II ☆☆☆(动态规划)

    描述 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” ). 机器人每次只能向下或者向右移动一步.机器人试图达到网格的右下角(在下图中标记为“Finish”). 现在 ...

  2. Leetcode之动态规划(DP)专题-63. 不同路径 II(Unique Paths II)

    Leetcode之动态规划(DP)专题-63. 不同路径 II(Unique Paths II) 初级题目:Leetcode之动态规划(DP)专题-62. 不同路径(Unique Paths) 一个机 ...

  3. lintcode-115-不同的路径 II

    115-不同的路径 II "不同的路径" 的跟进问题: 现在考虑网格中有障碍物,那样将会有多少条不同的路径? 网格中的障碍和空位置分别用 1 和 0 来表示. 注意事项 m 和 n ...

  4. LeetCode:不同路径&不同路径II

    不同路径一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” ). 机器人每次只能向下或者向右移动一步.机器人试图达到网格的右下角(在下图中标记为“Finish”). 问 ...

  5. 【BZOJ2306】幸福路径(动态规划,倍增)

    [BZOJ2306]幸福路径(动态规划,倍增) 题面 BZOJ 题解 不要求确切的值,只需要逼近 显然可以通过移动\(\infty\)步来达到逼近的效果 考虑每次的一步怎么移动 设\(f[i][j]\ ...

  6. Leetcode 931. Minimum falling path sum 最小下降路径和(动态规划)

    Leetcode 931. Minimum falling path sum 最小下降路径和(动态规划) 题目描述 已知一个正方形二维数组A,我们想找到一条最小下降路径的和 所谓下降路径是指,从一行到 ...

  7. lintcode_115_不同的路径 II

    不同的路径 II   描述 笔记 数据 评测 "不同的路径" 的跟进问题: 现在考虑网格中有障碍物,那样将会有多少条不同的路径? 网格中的障碍和空位置分别用 1 和 0 来表示. ...

  8. LintCode_114 不同的路径,115 不同的路径 II

    题目 有一个机器人的位于一个M×N个网格左上角(下图中标记为'Start'). 机器人每一时刻只能向下或者向右移动一步.机器人试图达到网格的右下角(下图中标记为'Finish'). 问有多少条不同的路 ...

  9. Java实现 LeetCode 63 不同路径 II(二)

    63. 不同路径 II 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为"Start" ). 机器人每次只能向下或者向右移动一步.机器人试图达到网格的右下角(在 ...

随机推荐

  1. Git恢复删除的分支

    1.使用 git reflog 命令查看显示整个本地仓储的commit,包括所有branch的commit,甚至包括已经撤销的commit. 2.找到我们想要恢复的分支 ,可以看到我们当时commit ...

  2. maven 学习---Maven启用代理访问

    如果你的公司正在建立一个防火墙,并使用HTTP代理服务器来阻止用户直接连接到互联网.如果您使用代理,Maven将无法下载任何依赖. 为了使它工作,你必须声明在 Maven 的配置文件中设置代理服务器: ...

  3. Android viewPager+fragment实现滑页效果

    先上图,手指在手机向左或者向右滑就可以实现相应的页面切换. 先看activity_main.xml文件,非常简单,主要是三个标题TextView和viewpager <?xml version= ...

  4. kubernetes学习Service之headless和statefulSet结合

    一.首先说headless Service和普通Service的区别 headless不分配clusterIP headless service可以通过解析service的DNS,返回所有Pod的地址 ...

  5. ELK日志系统之说说logstash的各种配置

    当我们在设置配置logstash的conf文件内容时,日志数据的来源有以下几种配置: tcp形式:一个项目或其他日志数据来源用tcp协议的远程传输方式,将日志数据传入logstash input { ...

  6. 数据库系统(四)---关系型数据库设计及E-R图

    1.关系型数据库: 关系型数据库是一类采用关系模型作为逻辑数据模型的数据库系统,遵从数据库设计的基本步骤,包括:需求分析.概念结构设计.逻辑结构设计.物理结构设计.数据库实施.数据库的运行和维护等阶段 ...

  7. word2vector(含code)

    Word2Vec其实就是通过学习文本来用词向量的方式表征词的语义信息,即通过一个嵌入空间使得语义上相似的单词在该空间内距离很近. Embedding其实就是一个映射,将单词从原先所属的空间映射到新的多 ...

  8. Compute Shader基础

    ComputeShader:     GPGPU:General Purpose GPU Programming,GPU通用计算,利用GPU的并行特性.大量并行无序数据的少分支逻辑适合GPGPU.平台 ...

  9. CSP 201903-2 24点

    这是上一次考csp时遇到的一道简单的问题,但是当时太菜了没有写出来. 问题描述: 直接上图 解决思路: 标准的表达式求解,可以用符号栈和数值栈来存放运算符和数值,需要注意的是从左到右扫描的时候 遇到 ...

  10. Consul 学习资料

    资料 网址 Consul 入门指南 https://book-consul-guide.vnzmi.com/