CF 900D Unusual Sequences
题目链接
\(Description\)
给定\(x,y\),求有多少个数列满足\(gcd(a_i)=x且\sum a_i=y\)。答案对\(10^9+7\)取模。
\(1≤x,y≤10^9\)
\(Solution\)
\(y\)如果不是\(x\)的倍数,答案为\(0\)
然后呢
令\(y/=x\),问题就变成了求有多少个数列满足\(gcd(a_i)=1且\sum ai=y'\)
如果没有\(gcd\)为\(1\)的限制?
隔板法可得\(ans=\sum_{i=0}^{y-1}C_{y-1}^i=2^{y-1}\)
令\(f(i)\)表示\(gcd(a_i)=1\)且和为\(i\)的方案数,\(g(i)\)表示和为\(i\)的方案数。
可得
\]
要求的是\(f(i)\),所以把\(f(i)\)的一项单独拿出来
\]
然后就可以从前往后递推了。
复杂度\(O(d(y/x)^2)\),其中\(d(x)\)为\(x\)的约数个数。
当然$$g(i)=\sum_{d|i}f(d)$$
就是一般的莫比乌斯反演的形式。
可以直接得出
\]
#include<complex>
#include<cstdio>
using namespace std;
const int mod=1e9+7;
const int N=1e5+7;
int x,y,tot;
int d[N];
int qread()
{
int x=0;
char ch=getchar();
while(ch<'0' || ch>'9')ch=getchar();
while(ch>='0' && ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x;
}
int GetMu(int x)
{
if(x==1)return 1;
int t=0,sqr=sqrt(x);
for(int i=2;i<=sqr;i++)
if(x%i==0)
{
t++;x/=i;
if(x%i==0)return 0;
}
if(x>1)t++;
return t&1?-1:1;
}
int Fpow(long long b,int p)
{
long long res=1;
for(;p;p>>=1,b=b*b%mod)
if(p&1)res=res*b%mod;
return res;
}
int main()
{
scanf("%d%d",&x,&y);
if(y%x){printf("0\n");return 0;}
y/=x;
for(int i=1;i*i<=y;i++)
if(y%i==0)
{
d[++tot]=i;
if(i*i!=y)d[++tot]=y/i;
}
long long ans=0;
for(int i=1;i<=tot;i++)
ans+=GetMu(y/d[i])*Fpow(2,d[i]-1);
printf("%d\n",(ans%mod+mod)%mod);
return 0;
}
CF 900D Unusual Sequences的更多相关文章
- Codeforces 900D Unusual Sequences 容斥原理
题目链接:900D Unusual Sequences 题意: 给出两个数N,M.让你求数列(和为M,gcd为N)的个数. 题解: 首先,比较容易发现的是M%N如果不为零,那么一定不能构成这样的序列 ...
- CodeForces 900D Unusual Sequences
题目链接: https://codeforces.com/contest/900/problem/D 题意 假设有distinct 正整数序列{a1,a2,,,an},满足gcd(a1, a2, .. ...
- Codeforces 900D Unusual Sequences:记忆化搜索
题目链接:http://codeforces.com/problemset/problem/900/D 题意: 给定x,y,问你有多少个数列a满足gcd(a[i]) = x 且 ∑(a[i]) = y ...
- 【CF900D】Unusual Sequences 容斥(莫比乌斯反演)
[CF900D]Unusual Sequences 题意:定义正整数序列$a_1,a_2...a_n$是合法的,当且仅当$gcd(a_1,a_2...a_n)=x$且$a_1+a_2+...+a_n= ...
- CodeForces - 900D: Unusual Sequences (容斥&莫比乌斯&组合数学)
Count the number of distinct sequences a1, a2, ..., an (1 ≤ ai) consisting of positive integers such ...
- CF 405C Unusual Product(想法题)
题目链接: 传送门 Domino Effect time limit per test:1 second memory limit per test:256 megabytes Descrip ...
- CF 990C. Bracket Sequences Concatenation Problem【栈/括号匹配】
[链接]:CF [题意]: 给出n个字符串,保证只包含'('和')',求从中取2个字符串链接后形成正确的括号序列的方案数(每个串都可以重复使用)(像'()()'和'(())'这样的都是合法的,像')( ...
- CF 256D. Good Sequences(DP)
题目链接 主要是标记前面素数的最大的DP值,要认真一些.没想到居然写了一个很难发现的错误. #include <cstdio> #include <cstring> #incl ...
- cf B. Making Sequences is Fun
http://codeforces.com/contest/373/problem/B 用二分枚举长度就可以. #include <cstdio> #include <cstring ...
随机推荐
- 获取Excel
默认Excel文档为 代码如下 需要下载 "EPPlus.Core" var file = Directory.GetCurrentDirectory() + "\ ...
- (转载) js 单引号替换成双引号,双引号替换成单引号 操作
引言:刚开始用js遇到不少问题,表示看不懂,为什么替换单引号需要/g,现在知道/g是正则中的匹配全部 原文:http://blog.csdn.net/joyhen/article/details/43 ...
- MVC学习笔记(六)---遇到的小问题汇总
一.MVC中Controller中返回两个对象的写法如下: , msg = "成功", user = user, userInfo = person }); 二.前台向后台传入带有 ...
- ASP.NET MVC 允许跨域请求设置
场景:创建一个图片上传的站点,用于其他站点跨域上传附件和图片之类. 上传插件结合百度的 webuploader.js 经常会碰到,跨域的问题,如下, 处理方式呢,是在web.config 中配置允许跨 ...
- CMU-Multimodal SDK Version 1.1 (mmsdk)使用方法总结
年10月26日 星期六 mmdatasdk: module for downloading and procesing multimodal datasets using computational ...
- Vue – 基础学习(3):$forceUpdate()和$nextTick()的区别
Vue – 基础学习(3):$forceUpdate()和$nextTick()的区别
- Java垃圾回收_过程观察
这是今天看JVM垃圾回收的时候做的实验观察. 使用工具:Java VisualVM.VisualVM GC插件 观察应用:Tomcat容器中的Web服务 1. Java VisualVM 在tomca ...
- Spark ML协同过滤推荐算法
一.简介 协同过滤算法[Collaborative Filtering Recommendation]算法是最经典.最常用的推荐算法.该算法通过分析用户兴趣,在用户群中找到指定用户的相似用户,综合这些 ...
- Alpha项目测试--个人第五次博客
第五次个人博客--测试 这个作业属于哪个课程 系统分析与设计 这个作业的要求在哪里 Alpha项目测试 团队名称 西柚排课王 这个作业的目标 测试别人的项目,从客观的角度体验项目 一.测试项目一 团队 ...
- C++学习(10)—— 对象模型和this指针
1. 成员变量和成员函数分开存储 在C++中,类内的成员变量和成员函数分开存储 只有非静态成员变量才属于类的对象上 空对象占用内存空间为1 C++编译器会给每个空对象也分配一个字节空间,是为了区分空对 ...