参考了神仙gzy的博客

置换:把一个排列变成另外一个排列,简单来说就是一一映射。
置换群:置换的集合。

置换即给定一个排列\({f_1,f_2,...,f_n}\),若其作用在一个排列上,则这个排列置换后的第\(i\)个位置上的数变为置换前的第\(f_i\)个位置上的数,实质是一个从一个排列到另一排列的一一映射。

  • 置换之间可以进行乘法

  • 置换可以分解成若干循环的乘积

    以上两点可参考gzy的博客,其中第二点是等价类计数中常用的方法,在我有关排列计数的文章中会提到

Burnside引理

设G为置换集合,且对于任意\(f,g\in G\),有\(fg\in G\)

\(C(f)\)为置换\(f\)的不动点个数,即一个排列进行置换\(f\)后还是这个排列

L为置换\(G\)下等价类个数,若排列a可以通过G中的置换得到b,则a,b属于同一等价类

\[L=\frac{\sum_{f\in G}C(f)}{|G|}\]

证明:

设\(Z_i\)为使\(i\)为不动点的置换集合大小,\(E_i\)为第\(i\)个等价类的大小。

\[\sum_{f\in G}C(f)=\sum_{i=1}^{n}Z_i\]

又因为对于一个等价类\(j\),其中所有点\(i\)的\(Z_i\)都相等,设其为\(H_j\)

\(\sum_{i=1}^{n}Z_i=\sum_{i=1}^{L}E_iH_i\)

又因为每一个点经过\(G\)中的任意一个置换都会置换到它所在的等价类中的一个点,而置换到每一个点都有\(H_i\)种不同的置换方式

所以

\[|G|=E_iH_i\]

\[\therefore \sum_{i=1}^{n}Z_i=\sum_{i=1}^{L}|G|=L|G|\]

\[\sum_{f\in G}C(f)=L|G|\]

所以

\[L=\frac{\sum_{f\in G}C(f)}{|G|}\]

引理得证。

Polya定理也可以用Burnside引理证出来,详细可见Polya定理模板

Burnside引理的更多相关文章

  1. [bzoj 1004][HNOI 2008]Cards(Burnside引理+DP)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1004 分析: 1.确定方向:肯定是组合数学问题,不是Polya就是Burnside,然后题目上 ...

  2. POJ 2888 Magic Bracelet(Burnside引理,矩阵优化)

    Magic Bracelet Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 3731   Accepted: 1227 D ...

  3. BZOJ 1004 Cards(Burnside引理+DP)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1004 题意:三种颜色的扑克牌各有Sr,Sb,Sg张.给出m种置换.两种染色方案在某种置换 ...

  4. BZOJ_[HNOI2008]_Cards_(置换+Burnside引理+乘法逆元+费马小定理+快速幂)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1004 共n个卡片,染成r,b,g三种颜色,每种颜色的个数有规定.给出一些置换,可以由置换得到的 ...

  5. [BZOJ 1004] [HNOI2008] Cards 【Burnside引理 + DP】

    题目链接:BZOJ - 1004 题目分析 首先,几个定义和定理引理: 群:G是一个集合,*是定义在这个集合上的一个运算. 如果满足以下性质,那么(G, *)是一个群. 1)封闭性,对于任意 a, b ...

  6. BZOJ 1004: [HNOI2008]Cards( 置换群 + burnside引理 + 背包dp + 乘法逆元 )

    题意保证了是一个置换群. 根据burnside引理, 答案为Σc(f) / (M+1). c(f)表示置换f的不动点数, 而题目限制了颜色的数量, 所以还得满足题目, 用背包dp来计算.dp(x,i, ...

  7. BZOJ 1004 HNOI2008 Cards Burnside引理

    标题效果:特定n张卡m换人,编号寻求等价类 数据保证这m换人加上置换群置换后本身构成 BZOJ坑爹0.0 条件不那么重要出来尼玛怎么做 Burnside引理--昨晚为了做这题硬啃了一晚上白书0.0 都 ...

  8. HDU 5868 Different Circle Permutation(burnside 引理)

    HDU 5868 Different Circle Permutation(burnside 引理) 题目链接http://acm.hdu.edu.cn/showproblem.php?pid=586 ...

  9. 置换群、Burnside引理与等价类计数问题

    置换群.Burnside引理与等价类计数问题 标签: 置换群 Burnside引理 置换 说说我对置换的理解,其实就是把一个排列变成另外一个排列.简单来说就是一一映射.而置换群就是置换的集合. 比如\ ...

  10. 【BZOJ1004】Cards(组合数学,Burnside引理)

    [BZOJ1004]Cards(组合数学,Burnside引理) 题面 Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Su ...

随机推荐

  1. 容斥原理--计算错排的方案数 UVA 10497

    错排问题是一种特殊的排列问题. 模型:把n个元素依次标上1,2,3.......n,求每一个元素都不在自己位置的排列数. 运用容斥原理,我们有两种解决方法: 1. 总的排列方法有A(n,n),即n!, ...

  2. 使用excel中的数据快速生成sql语句

    在小公司的话,总是会有要开发去导入历史数据(数据从旧系统迁移到新系统上)的时候.这个时候,现场实施或客户会给你一份EXCEL文档,里面包含了一些别的系统上的历史数据,然后就让你导入到现在的系统上面去. ...

  3. 常用mysql系统表及命令

    常用系统表查看当前数据库连接ip信息– select * from information_schema.PROCESSLIST 当前mysql实例中所有数据库的信息– select * from i ...

  4. Redis-2-五种基本类型及相关命令

    目录 1.字符串类型:string 1.1 命令 1.2 实践 2.散列类型:hash 2.1命令 2.2 实践 3.列表类型:list 3.1 命令 3.2 实践 4.集合类型:set 4.1 命令 ...

  5. 2019-11-29-WPF-绑定命令在-MVVM-的-CanExecute-和-Execute-在按钮点击都没触发可能的原因...

    原文:2019-11-29-WPF-绑定命令在-MVVM-的-CanExecute-和-Execute-在按钮点击都没触发可能的原因... title author date CreateTime c ...

  6. 在普通网页显示正常,加Https报This request has been blocked; the content must be served over HTTPS.,https网站加载http资源时,http资源被block

    解决办法 :在html头加<meta http-equiv="Content-Security-Policy" content="upgrade-insecure- ...

  7. C#操作XML文档

    Note: '=> ' 表示返回值 参考资料:请点击这里! 1:创建Xml文档 2:写Xml文档(必须保证有根元素) XmlDocument Xd (实例化一个对象) CreateXmlDecl ...

  8. python调用腾讯云短信接口

    目录 python调用腾讯云短信接口 账号注册 python中封装腾讯云短信接口 python调用腾讯云短信接口 账号注册 去腾讯云官网注册一个腾讯云账号,通过实名认证 然后开通短信服务,创建短信应用 ...

  9. PHP之面向对象(下)

    1,类的创建 class 2,对象的创建 new关键字 3,成员的添加 修饰符 添加成员需要三个修饰符 public 公开的 定义公共的属性和方法,类的外部,内部,子类都可以使用 protected ...

  10. 面试题:java中String为什么要设置成final

    1.不可改变---执行效率高 2.因为String这个对象基本是被所有的类对象都会使用的到了,如果可以被复写,就会很乱套,比如map的key ,如果是一个string为key的话,String如果可以 ...