Burnside引理
参考了神仙gzy的博客
置换:把一个排列变成另外一个排列,简单来说就是一一映射。
置换群:置换的集合。
置换即给定一个排列\({f_1,f_2,...,f_n}\),若其作用在一个排列上,则这个排列置换后的第\(i\)个位置上的数变为置换前的第\(f_i\)个位置上的数,实质是一个从一个排列到另一排列的一一映射。
置换之间可以进行乘法
置换可以分解成若干循环的乘积
以上两点可参考gzy的博客,其中第二点是等价类计数中常用的方法,在我有关排列计数的文章中会提到
Burnside引理
设G为置换集合,且对于任意\(f,g\in G\),有\(fg\in G\)
\(C(f)\)为置换\(f\)的不动点个数,即一个排列进行置换\(f\)后还是这个排列
L为置换\(G\)下等价类个数,若排列a可以通过G中的置换得到b,则a,b属于同一等价类
有
\[L=\frac{\sum_{f\in G}C(f)}{|G|}\]
证明:
设\(Z_i\)为使\(i\)为不动点的置换集合大小,\(E_i\)为第\(i\)个等价类的大小。
则
\[\sum_{f\in G}C(f)=\sum_{i=1}^{n}Z_i\]
又因为对于一个等价类\(j\),其中所有点\(i\)的\(Z_i\)都相等,设其为\(H_j\)
则
\(\sum_{i=1}^{n}Z_i=\sum_{i=1}^{L}E_iH_i\)
又因为每一个点经过\(G\)中的任意一个置换都会置换到它所在的等价类中的一个点,而置换到每一个点都有\(H_i\)种不同的置换方式
所以
\[|G|=E_iH_i\]
\[\therefore \sum_{i=1}^{n}Z_i=\sum_{i=1}^{L}|G|=L|G|\]
即
\[\sum_{f\in G}C(f)=L|G|\]
所以
\[L=\frac{\sum_{f\in G}C(f)}{|G|}\]
引理得证。
Polya定理也可以用Burnside引理证出来,详细可见Polya定理模板
Burnside引理的更多相关文章
- [bzoj 1004][HNOI 2008]Cards(Burnside引理+DP)
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1004 分析: 1.确定方向:肯定是组合数学问题,不是Polya就是Burnside,然后题目上 ...
- POJ 2888 Magic Bracelet(Burnside引理,矩阵优化)
Magic Bracelet Time Limit: 2000MS Memory Limit: 131072K Total Submissions: 3731 Accepted: 1227 D ...
- BZOJ 1004 Cards(Burnside引理+DP)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1004 题意:三种颜色的扑克牌各有Sr,Sb,Sg张.给出m种置换.两种染色方案在某种置换 ...
- BZOJ_[HNOI2008]_Cards_(置换+Burnside引理+乘法逆元+费马小定理+快速幂)
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1004 共n个卡片,染成r,b,g三种颜色,每种颜色的个数有规定.给出一些置换,可以由置换得到的 ...
- [BZOJ 1004] [HNOI2008] Cards 【Burnside引理 + DP】
题目链接:BZOJ - 1004 题目分析 首先,几个定义和定理引理: 群:G是一个集合,*是定义在这个集合上的一个运算. 如果满足以下性质,那么(G, *)是一个群. 1)封闭性,对于任意 a, b ...
- BZOJ 1004: [HNOI2008]Cards( 置换群 + burnside引理 + 背包dp + 乘法逆元 )
题意保证了是一个置换群. 根据burnside引理, 答案为Σc(f) / (M+1). c(f)表示置换f的不动点数, 而题目限制了颜色的数量, 所以还得满足题目, 用背包dp来计算.dp(x,i, ...
- BZOJ 1004 HNOI2008 Cards Burnside引理
标题效果:特定n张卡m换人,编号寻求等价类 数据保证这m换人加上置换群置换后本身构成 BZOJ坑爹0.0 条件不那么重要出来尼玛怎么做 Burnside引理--昨晚为了做这题硬啃了一晚上白书0.0 都 ...
- HDU 5868 Different Circle Permutation(burnside 引理)
HDU 5868 Different Circle Permutation(burnside 引理) 题目链接http://acm.hdu.edu.cn/showproblem.php?pid=586 ...
- 置换群、Burnside引理与等价类计数问题
置换群.Burnside引理与等价类计数问题 标签: 置换群 Burnside引理 置换 说说我对置换的理解,其实就是把一个排列变成另外一个排列.简单来说就是一一映射.而置换群就是置换的集合. 比如\ ...
- 【BZOJ1004】Cards(组合数学,Burnside引理)
[BZOJ1004]Cards(组合数学,Burnside引理) 题面 Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Su ...
随机推荐
- 容斥原理--计算错排的方案数 UVA 10497
错排问题是一种特殊的排列问题. 模型:把n个元素依次标上1,2,3.......n,求每一个元素都不在自己位置的排列数. 运用容斥原理,我们有两种解决方法: 1. 总的排列方法有A(n,n),即n!, ...
- 使用excel中的数据快速生成sql语句
在小公司的话,总是会有要开发去导入历史数据(数据从旧系统迁移到新系统上)的时候.这个时候,现场实施或客户会给你一份EXCEL文档,里面包含了一些别的系统上的历史数据,然后就让你导入到现在的系统上面去. ...
- 常用mysql系统表及命令
常用系统表查看当前数据库连接ip信息– select * from information_schema.PROCESSLIST 当前mysql实例中所有数据库的信息– select * from i ...
- Redis-2-五种基本类型及相关命令
目录 1.字符串类型:string 1.1 命令 1.2 实践 2.散列类型:hash 2.1命令 2.2 实践 3.列表类型:list 3.1 命令 3.2 实践 4.集合类型:set 4.1 命令 ...
- 2019-11-29-WPF-绑定命令在-MVVM-的-CanExecute-和-Execute-在按钮点击都没触发可能的原因...
原文:2019-11-29-WPF-绑定命令在-MVVM-的-CanExecute-和-Execute-在按钮点击都没触发可能的原因... title author date CreateTime c ...
- 在普通网页显示正常,加Https报This request has been blocked; the content must be served over HTTPS.,https网站加载http资源时,http资源被block
解决办法 :在html头加<meta http-equiv="Content-Security-Policy" content="upgrade-insecure- ...
- C#操作XML文档
Note: '=> ' 表示返回值 参考资料:请点击这里! 1:创建Xml文档 2:写Xml文档(必须保证有根元素) XmlDocument Xd (实例化一个对象) CreateXmlDecl ...
- python调用腾讯云短信接口
目录 python调用腾讯云短信接口 账号注册 python中封装腾讯云短信接口 python调用腾讯云短信接口 账号注册 去腾讯云官网注册一个腾讯云账号,通过实名认证 然后开通短信服务,创建短信应用 ...
- PHP之面向对象(下)
1,类的创建 class 2,对象的创建 new关键字 3,成员的添加 修饰符 添加成员需要三个修饰符 public 公开的 定义公共的属性和方法,类的外部,内部,子类都可以使用 protected ...
- 面试题:java中String为什么要设置成final
1.不可改变---执行效率高 2.因为String这个对象基本是被所有的类对象都会使用的到了,如果可以被复写,就会很乱套,比如map的key ,如果是一个string为key的话,String如果可以 ...