洛谷 P4707 重返现世


k-minimax容斥

有这一个式子:\(E(\max_k(S))=\sum_{T\subseteq S}(-1)^{|T|-k}C_{|T|-1}^{k-1}\min(T)\)

dp。考虑怎么设状态,因为\(\min(T)=\frac{m}{\sum_{i\in T}i}\),所以要设一维表示和;还要加一维表示当前的\(k\)。

设\(f_{i,k,j}\)表示\(S\)中加入了前\(i\)个元素,式子中的\(\sum_{T\subseteq S}(-1)^{|T|-k}C_{|T|-1}^{k-1}\)值。

考虑转移,进来一个数\(x\)可以选择加进\(T\)或不加。不加显然直接转移,\(f_{i+1,k,j}+=f_{i,k,j}\)。

如果加这个数,\(|T|\)要变成\(|T|+1\),改写式子:

\(\sum_{T\subseteq S}(-1)^{|T|+1-k}C_{|T|}^{k-1}\)

\(\sum_{T\subseteq S}(-1)^{|T|+1-k}(C_{|T|-1}^{k-1}+C_{|T|-1}^{k-2})\)

\(\sum_{T\subseteq S}(-(-1)^{|T|-k}C_{|T|-1}^{k-1}+(-1)^{|T|-k-1}C_{|T|-1}^{k-2})\)

那么转移是\(f_{i+1,k,j}+=-f_{i,k,j-p_i}+f_{i,k-1,j-p_i}\)。

边界情况是\(f_{i,0,0}=1\)。

#include<bits/stdc++.h>
#define il inline
#define vd void
#define mod 998244353
typedef long long ll;
il ll gi(){
ll x=0,f=1;
char ch=getchar();
while(!isdigit(ch))f^=ch=='-',ch=getchar();
while(isdigit(ch))x=x*10+ch-'0',ch=getchar();
return f?x:-x;
}
int p[1010],f[11][10010];
il vd inc(int&a,int b){a=a+b>=mod?a+b-mod:a+b;}
il int sub(int a,int b){return a<b?a-b+mod:a-b;}
il int pow(int x,int y){
int ret=1;
while(y){
if(y&1)ret=1ll*ret*x%mod;
x=1ll*x*x%mod;y>>=1;
}
return ret;
}
int main(){
#ifdef XZZSB
freopen("in.in","r",stdin);
freopen("out.out","w",stdout);
#endif
int n=gi(),k=n+1-gi(),m=gi();
for(int i=1;i<=n;++i)p[i]=gi();
f[0][0]=1;
for(int i=1;i<=n;++i)
for(int j=k;j;--j)
for(int l=m;l>=p[i];--l)
inc(f[j][l],sub(f[j-1][l-p[i]],f[j][l-p[i]]));
int ans=0;
for(int i=1;i<=m;++i)inc(ans,1ll*f[k][i]*pow(i,mod-2)%mod);
printf("%d\n",1ll*ans*m%mod);
return 0;
}

洛谷 P4707 重返现世的更多相关文章

  1. [洛谷P4707] 重返现世

    Description 为了打开返回现世的大门,\(Yopilla\) 需要制作开启大门的钥匙.\(Yopilla\) 所在的迷失大陆有 \(n\) 种原料,只需要集齐任意 \(k\) 种,就可以开始 ...

  2. 洛谷P4707 重返现世 [DP,min-max容斥]

    传送门 前置知识 做这题前,您需要认识这个式子: \[ kthmax(S)=\sum_{\varnothing\neq T\subseteq S}{|T|-1\choose k-1} (-1)^{|T ...

  3. 【题解】洛谷P4707重返现世

    在跨年的晚上玩手机被妈妈骂了赶来写题……呜呜呜……但是A题了还是很开心啦,起码没有把去年的题目留到明年去做ヾ(◍°∇°◍)ノ゙也祝大家2019快乐! 这题显然的 kth min-max 容斥就不说了, ...

  4. 洛谷P4707 重返现世(扩展MinMax容斥+dp)

    传送门 我永远讨厌\(dp.jpg\) 前置姿势 扩展\(Min-Max\)容斥 题解 看纳尔博客去→_→ 咱现在还没搞懂为啥初值要设为\(-1\)-- //minamoto #include< ...

  5. 洛谷 P4707 - 重返现世(扩展 Min-Max 容斥+背包)

    题面传送门 首先看到这种求形如 \(E(\max(T))\) 的期望题,可以套路地想到 Min-Max 容斥 \(\max(S)=\sum\limits_{T\subseteq S}(-1)^{|T| ...

  6. 洛谷 P4707 【重返现世】

    题目分析 题目就是求第K种原料的出现期望时间. 考虑广义min-max容斥. \(\text{kthmax}(S)=\sum\limits_{T\subseteq S}(-1)^{|T|-k}\bin ...

  7. Luogu P4707 重返现世

    题目描述 为了打开返回现世的大门,Yopilla 需要制作开启大门的钥匙.Yopilla 所在的迷失大陆有 \(n\) 种原料,只需要集齐任意 \(k\) 种,就可以开始制作. Yopilla 来到了 ...

  8. Luogu P4707 重返现世 (拓展Min-Max容斥、DP)

    题目链接 https://www.luogu.org/problem/P4707 题解 最近被神仙题八连爆了-- 首先Min-Max容斥肯定都能想到,问题是这题要用一个扩展版的--Kth Min-Ma ...

  9. P4707 重返现世 扩展 MinMax 容斥+DP

    题目传送门 https://www.luogu.org/problem/P4707 题解 很容易想到这是一个 MinMax 容斥的题目. 设每一个物品被收集的时间为 \(t_i\),那么集齐 \(k\ ...

随机推荐

  1. 解决h5版的uniapp请求跨域问题

    uni项目里有个名为manifest.json文件 编辑manifest.json文件,找到h5选项,里面一般有个名为“devServer”索引,往这个索引中添加一个“proxy”或者编辑,值为请求域 ...

  2. 2019 咪咕文化java面试笔试题 (含面试题解析)

    本人3年开发经验.18年年底开始跑路找工作,在互联网寒冬下成功拿到阿里巴巴.今日头条.咪咕文化等公司offer,岗位是Java后端开发,最终选择去了咪咕文化. 面试了很多家公司,感觉大部分公司考察的点 ...

  3. Mybatis中使用association及collection进行一对多双向关联示例(含XML版与注解版)

    XML版本: 实体类: package com.sunwii.mybatis.bean; import java.util.ArrayList; import java.util.List; impo ...

  4. jquery获取form表单中的数据

    $(function() { $('#submit').click(function() { var d = {}; var t = $('form').serializeArray(); //t的值 ...

  5. 学习笔记之三十年软件开发之路 - Things I Learnt The Hard Way (in 30 Years of Software Development)

    三十年软件开发之路 https://mp.weixin.qq.com/s/EgN-9bIHonRid1DM0csQDw https://blog.juliobiason.net/thoughts/th ...

  6. java系统化基础-day02-运算符、选择结构、循环结构

    1.java中的运算符 package com.wfd360.day02; import org.junit.Test; import java.math.BigInteger; /** * 1.算术 ...

  7. vue v-for中的item改变无法引起视图的更新

    写过angularjs的同学知道,如果ng-repeat中的item绑定到对应的model,item改变是会引起视图的更新的,但是vue中不起作用,具体的解决办法: 在vue脚手架中,首先引入vue ...

  8. day 02 预科

    目录 什么是编程语言 什么是编程 为什么要编程 计算机的组成 CPU 存储器 I/O设备(Input/Output设备) 输入设备 输出设备 多核CPU 32位和64位 机械硬盘工作原理 机械手臂 磁 ...

  9. PHP实现财务审核通过后返现金额到客户

    应用场景: 有这么一个返现的系统,当前端客户发起提现的时候,后端就要通过审核这笔返现订单,才可以返现到客户的账号里. 来看看下面的截图 这里的业务场景就是经过两轮审核:销售审核,财务审核都通过后,后端 ...

  10. K8S 部署 ingress-nginx 配置 https

    生成证书 mkdir cert && cd cert # 生成私钥 tls.key, 密钥位数是 2048 openssl genrsa -out tls.key 2048 # 使用 ...