传送门

Description

有一个h行w列的棋盘,里面有一些格子是不能走的,现在要求从左上角走到右下角的方案数。

Input

单组测试数据。

第一行有三个整数h, w, n(1 ≤ h, w ≤ 10^5, 1 ≤ n ≤ 2000),表示棋盘的行和列,还有不能走的格子的数目。

接下来n行描述格子,第i行有两个整数ri, ci (1 ≤ ri ≤ h, 1 ≤ ci ≤ w),表示格子所在的行和列。

输入保证起点和终点不会有不能走的格子。

Output

输出答案对1000000007取余的结果。

Sample Input

3 4 2

2 2

2 3

Sample Output

2

Solution

luogu 4478 上学路线还简单不少

Code

//By Menteur_Hxy
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#define F(i,a,b) for(register int i=(a);i<=(b);i++)
#define R(i,a,b) for(register int i=(b);i>=(a);i--)
using namespace std;
typedef long long LL; inline int read() {
int x=0,f=1; char c=getchar();
while(!isdigit(c)) {if(c=='-')f=-f;c=getchar();}
while(isdigit(c)) x=(x<<1)+(x<<3)+c-48,c=getchar();
return x*f;
} const int N=2e5,MAX=2010,MOD=1e9+7;//组合数预处理2e5因为最大是横竖加起来
int n,m,p;
LL fac[N+10],inv[N+10],f[MAX];
struct P{int x,y;}pl[MAX]; LL qpow(LL a,LL b) {
LL t=1;
while(b) {
if(b&1) t=t*a%MOD;
a=a*a%MOD; b>>=1;
}
return t;
} void init() {
fac[0]=1; F(i,1,N) fac[i]=fac[i-1]*i%MOD;
inv[N]=qpow(fac[N],MOD-2);
R(i,-1,N-1) inv[i]=inv[i+1]*(LL)(i+1)%MOD;
} LL C(int m,int n) {return fac[m]*inv[m-n]%MOD*inv[n]%MOD;}
bool cmp(P a,P b) {return a.x==b.x?a.y<b.y:a.x<b.x;} int main() {
init();
n=read(),m=read(),p=read();
F(i,1,p) pl[i].x=read(),pl[i].y=read();
pl[++p].x=n,pl[p].y=m;
sort(pl+1,pl+1+p,cmp);
F(i,1,p) f[i]=C(pl[i].x+pl[i].y-2,pl[i].x-1);
F(i,1,p) F(j,1,i-1) if(pl[j].y<=pl[i].y) {// 一定是小于等于
LL tmp=C(pl[i].x+pl[i].y-pl[j].x-pl[j].y,pl[i].x-pl[j].x);
f[i]=(f[i]-f[j]*tmp%MOD+MOD)%MOD;
}
printf("%lld",f[p]%MOD);
return 0;
}

[51Nod1486] 大大走格子 (dp+容斥)的更多相关文章

  1. 「PKUWC2018」随机游走(min-max容斥+FWT)

    「PKUWC2018」随机游走(min-max容斥+FWT) 以后题目都换成这种「」形式啦,我觉得好看. 做过重返现世的应该看到就想到 \(min-max\) 容斥了吧. 没错,我是先学扩展形式再学特 ...

  2. 【LOJ#2542】[PKUWC2018]随机游走(min-max容斥,动态规划)

    [LOJ#2542][PKUWC2018]随机游走(min-max容斥,动态规划) 题面 LOJ 题解 很明显,要求的东西可以很容易的进行\(min-max\)容斥,那么转为求集合的\(min\). ...

  3. bzoj 3622 DP + 容斥

    LINK 题意:给出n,k,有a,b两种值,a和b间互相配对,求$a>b$的配对组数-b>a的配对组数恰好等于k的情况有多少种. 思路:粗看会想这是道容斥组合题,但关键在于如何得到每个a[ ...

  4. 【BZOJ 4665】 4665: 小w的喜糖 (DP+容斥)

    4665: 小w的喜糖 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 94  Solved: 53 Description 废话不多说,反正小w要发喜 ...

  5. [Luogu P1450] [HAOI2008]硬币购物 背包DP+容斥

    题面 传送门:https://www.luogu.org/problemnew/show/P1450 Solution 这是一道很有意思的在背包里面做容斥的题目. 首先,我们可以很轻松地想到暴力做背包 ...

  6. 51nod1486 大大走格子

    容斥定理+dp...妈呀#1rp耗尽了难怪最近那么衰... #include<cstdio> #include<cstring> #include<cctype> ...

  7. 【洛谷5643】[PKUWC2018] 随机游走(Min-Max容斥+待定系数法+高维前缀和)

    点此看题面 大致题意: 从一个给定点出发,在一棵树上随机游走,对于相邻的每个点均有\(\frac 1{deg}\)的概率前往.多组询问,每次给出一个点集,求期望经过多少步能够访问过点集内所有点至少一次 ...

  8. bzoj2669 [cqoi2012]局部极小值 状压DP+容斥

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=2669 题解 可以发现一个 \(4\times 7\) 的矩阵中,有局部最小值的点最多有 \(2 ...

  9. HDU 5838 (状压DP+容斥)

    Problem Mountain 题目大意 给定一张n*m的地图,由 . 和 X 组成.要求给每个点一个1~n*m的数字(每个点不同),使得编号为X的点小于其周围的点,编号为.的点至少大于一个其周围的 ...

随机推荐

  1. 零基础学python-4.2 其它内建类型

    这一章节我们来聊聊其它内建类型 1.类型type 在python2.2的时候,type是通过字符串实现的,再后来才把类型和类统一 我们再次使用上一章节的图片来说明一些问题 我们通过对照上面的图片.在p ...

  2. UNIX环境编程学习——反思认识

     学习情况: 有关UNIX系统环境编程的学习时间用来非常长的时间.可是感觉效果还是不是太好,在中间经过了期末考试.用来非常长的时间用来学习专业课.就将该过程的学习放到了一边上,放假以后又回家造成了 ...

  3. jsp页面中使用javascript获取后台放在request或session中的值

    在JSP页面中.常常使用javascript,可是要出javascript获取存储在request,session, application中的值.例如以下是获取request中的值: 如果后台中有: ...

  4. oc27--synthesize,省略getset实现

    // // Person.h #import <Foundation/Foundation.h> @interface Person : NSObject { @public int _a ...

  5. Codeforces--106C--Buns(背包)

    Buns Time Limit: 2000MS   Memory Limit: 262144KB   64bit IO Format: %I64d & %I64u Submit Status ...

  6. DMA(direct memory access)直接内存访问

    DMA(Direct Memory Access),这里的 memory,指的是计算机的内存,自然与外存(storage)相对.这里的关键词在 Direct (直接),与传统的相对低效的,需要通过 C ...

  7. bzoj 2599(点分治)

    2599: [IOI2011]Race Time Limit: 70 Sec  Memory Limit: 128 MBSubmit: 3642  Solved: 1081[Submit][Statu ...

  8. [Apple开发者帐户帮助]五、管理标识符(5)创建一个iCloud容器

    您必须拥有一个或多个iCloud容器才能启用iCloud. 所需角色:帐户持有人或管理员. 在“ 证书”,“标识符和配置文件”中,从左侧的弹出菜单中选择操作系统. 在“标识符”下,选择“iCloud容 ...

  9. K8S-删除Terminating状态的namespace

    kubernetes 删除Terminating状态的命名空间 1.检查该namespace下是否还有资源: kubectl get all --namespace=cattle-system 2.删 ...

  10. Oracle_exp/expdp备份

    目录索引 1.exp和expdp的区别 2.expdp导出数据库流程 一.↓↓exp和expdp的区别↓↓ 1.exp和expdp最明显的区别就是导出速度的不同.expdp导出是并行导出(如果把exp ...