ZJOI2017线段树

题意:

​ 给你一颗广义线段树,太长了,自己去看。

题解:

​ 直接上zkw那一套,把闭区间换成开区间,就是把取\([l,r]\),变成取\([l-1,l-1],[r+1,r+1]\)两个端点,往跳,如果\([l-1,l-1]\)往上跳到某一层时,它是它父亲的左儿子,那它的兄弟就是区间中的点。

​ 答案就是(\(u\)是询问的点,\(v\)是区间中的点):

\[Ans=\sum_{v}dep[v]+dep[u]\times |\{v\}|-2\times sum
\]

​ \(sum\)是\(u\)和\(\{v\}\)中点的\(lca\)的深度和。然后这有\(3\)种情况,我们把\([l-1,l-1]\)取到的点看做左半部分,\([r+1,r+1]\)取到的看做右半部分,只看左半部分。

  1. \([l-1,l-1]\)和\(u\)的\(lca\)在所有左半部分点的上方,\(sum\)易得。

  2. \([l-1,l-1]\)和\(u\)的\(lca\)在所有左半部分点的下方,\(sum\)易得。

  3. \([l-1,l-1]\)和\(u\)的\(lca\)在一部分左半部分点的上方,相当于把所有点分成上下两个部分,按1、2做。

    注意\(lca\)是区间中的点的情况和\(l=1\)或\(r=n\)的情况。

    倍增实现。

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define fo(i,l,r) for(int i=l;i<=r;i++)
#define of(i,l,r) for(int i=l;i>=r;i--)
#define fe(i,u) for(int i=head[u];i;i=e[i].next)
using namespace std;
typedef long long ll;
typedef pair<ll,ll> pii;
#define P(a,b) make_pair(a,b)
inline void open(const char *s)
{
#ifndef ONLINE_JUDGE
char str[20];
sprintf(str,"in%s.txt",s);
freopen(str,"r",stdin);
// sprintf(str,"out%s.txt",s);
// freopen(str,"w",stdout);
#endif
}
inline int rd()
{
static int x,f;
x=0;f=1;
char ch=getchar();
for(;ch<'0'||ch>'9';ch=getchar())if(ch=='-')f=-1;
for(;ch>='0'&&ch<='9';ch=getchar())x=x*10+ch-'0';
return f>0?x:-x;
}
const int N=200010,NN=N<<1;
int n,m,rt,dep[NN],id[N],ch[NN][2],tim=0;
int bin[20],fa[NN][20],siz[NN][2][20];
ll sum[NN][2][20],ans=0; void pre(int &u,int l,int r,int fat)
{
u=++tim;dep[u]=dep[fat]+1;
if(l==r)return id[l]=u,void();
int mid=rd();
pre(ch[u][0],l,mid,u);
pre(ch[u][1],mid+1,r,u);
}
void dfs(int u,int fat)
{
if(!u)return;
fa[u][0]=fat;
siz[u][0][0]=u==ch[fat][1];
siz[u][1][0]=u==ch[fat][0];
sum[u][0][0]=u==ch[fat][1]?dep[ch[fat][0]]:0;
sum[u][1][0]=u==ch[fat][0]?dep[ch[fat][1]]:0;
fo(i,1,17){
fa[u][i]=fa[fa[u][i-1]][i-1];if(!fa[u][i])break;
siz[u][0][i]=siz[u][0][i-1]+siz[fa[u][i-1]][0][i-1];
siz[u][1][i]=siz[u][1][i-1]+siz[fa[u][i-1]][1][i-1];
sum[u][0][i]=sum[u][0][i-1]+sum[fa[u][i-1]][0][i-1];
sum[u][1][i]=sum[u][1][i-1]+sum[fa[u][i-1]][1][i-1];
}
dfs(ch[u][0],u);dfs(ch[u][1],u);
} inline int getlca(int x,int y)
{
if(x==y)return x;
if(dep[x]<dep[y])swap(x,y);
int d=dep[x]-dep[y];
fo(i,0,17)if(bin[i]&d)x=fa[x][i];
if(x==y)return x;
of(i,17,0)if(fa[x][i]!=fa[y][i])x=fa[x][i],y=fa[y][i];
return fa[x][0];
} inline pii get(int x,int lca,int t)
{
int d=dep[x]-dep[lca]-1,sz=0;
ll res=0;if(d<0)return P(0,0);
fo(i,0,17)if(d&bin[i]){
res+=sum[x][t][i];
sz+=siz[x][t][i];
x=fa[x][i];
}
return P(res,sz);
} inline void gaogao(int u,int x,int L,int t)
{
static pii res;
int lca=getlca(u,x);
if(dep[lca]<=dep[L])ans-=2ll*get(x,L,t).second*dep[lca];
else{
res=get(x,lca,t);ans-=2ll*res.second*dep[lca];
if(u==lca&&ch[u][t]&&getlca(x,ch[u][t])==u)ans-=2ll*dep[u];
else if(ch[lca][t]&&getlca(u,ch[lca][t])!=lca)ans-=2ll*dep[lca]+2ll;
res=get(lca,L,t);ans-=2ll*res.first-2ll*res.second;
}
} inline void gao()
{
static int u,ql,qr,lca;static pii res;
u=rd();ql=rd();qr=rd();ans=0;
if(ql==1&&qr==n)return void(printf("%d\n",dep[u]-1));
if(ql==1){
lca=getlca(id[1],id[qr+1]);
gaogao(u,id[qr+1],lca,0);
ans-=2ll*dep[getlca(ch[lca][0],u)]; res=get(id[qr+1],fa[lca][0],0);
ans+=res.first+(ll)dep[u]*res.second;
return void(printf("%lld\n",ans));
}
if(qr==n){
lca=getlca(id[n],id[ql-1]);
gaogao(u,id[ql-1],lca,1);
ans-=2ll*dep[getlca(ch[lca][1],u)]; res=get(id[ql-1],fa[lca][0],1);
ans+=res.first+(ll)dep[u]*res.second;
return void(printf("%lld\n",ans));
}
lca=getlca(id[ql-1],id[qr+1]);
gaogao(u,id[ql-1],lca,1);
gaogao(u,id[qr+1],lca,0); res=get(id[ql-1],lca,1);
ans+=res.first+(ll)dep[u]*res.second; res=get(id[qr+1],lca,0);
ans+=res.first+(ll)dep[u]*res.second;
printf("%lld\n",ans);
} int main()
{
bin[0]=1;fo(i,1,17)bin[i]=bin[i-1]<<1;
n=rd();pre(rt,1,n,0);
dfs(rt,0);
for(m=rd();m--;)gao();
return 0;
}

ZJOI2017线段树的更多相关文章

  1. [BZOJ4876][ZJOI2017]线段树

    没有用到任何算法,代码只有60+行,但是细节多如牛毛,各种分类讨论必须全部想清楚才行. https://www.cnblogs.com/xiejiadong/p/6811289.html #inclu ...

  2. 「ZJOI2017」树状数组(二维线段树)

    「ZJOI2017」树状数组(二维线段树) 吉老师的题目真是难想... 代码中求的是 \(\sum_{i=l-1}^{r-1}a_i\),而实际求的是 \(\sum_{i=l}^{r}a_i\),所以 ...

  3. [BZOJ4785][ZJOI2017]树状数组(概率+二维线段树)

    4785: [Zjoi2017]树状数组 Time Limit: 40 Sec  Memory Limit: 512 MBSubmit: 297  Solved: 195[Submit][Status ...

  4. 【BZOJ4785】[Zjoi2017]树状数组 树套树(二维线段树)

    [BZOJ4785][Zjoi2017]树状数组 Description 漆黑的晚上,九条可怜躺在床上辗转反侧.难以入眠的她想起了若干年前她的一次悲惨的OI 比赛经历.那是一道基础的树状数组题.给出一 ...

  5. Loj #2570. 「ZJOI2017」线段树

    Loj #2570. 「ZJOI2017」线段树 题目描述 线段树是九条可怜很喜欢的一个数据结构,它拥有着简单的结构.优秀的复杂度与强大的功能,因此可怜曾经花了很长时间研究线段树的一些性质. 最近可怜 ...

  6. bzoj4785:[ZJOI2017]树状数组:二维线段树

    分析: "如果你对树状数组比较熟悉,不难发现可怜求的是后缀和" 设数列为\(A\),那么可怜求的就是\(A_{l-1}\)到\(A_{r-1}\)的和(即\(l-1\)的后缀减\( ...

  7. 【UOJ295】【ZJOI2017】线段树 倍增

    题目大意 http://uoj.ac/problem/295 题解 考虑像 zkw 线段树一样,从 \([l-1,l-1],[r+1,r+1]\) 这两个区间开始往上跳,直到两个指针碰到一起为止. 先 ...

  8. BZOJ4785 ZJOI2017树状数组(概率+二维线段树)

    可以发现这个写挂的树状数组求的是后缀和.find(r)-find(l-1)在模2意义下实际上查询的是l-1~r-1的和,而本来要查询的是l~r的和.也就是说,若结果正确,则a[l-1]=a[r](mo ...

  9. BZOJ 4785 [Zjoi2017]树状数组 | 二维线段树

    题目链接 BZOJ 4785 题解 这道题真是令人头秃 = = 可以看出题面中的九条可怜把求前缀和写成了求后缀和,然后他求的区间和却仍然是sum[r] ^ sum[l - 1],实际上求的是闭区间[l ...

随机推荐

  1. hadoop ha

    https://blog.csdn.net/daydayup_668819/article/details/70815335 https://www.jianshu.com/p/8a6cc2d7206 ...

  2. caioj 1067动态规划入门(一维一边推5: 乘积最大(高精度版))

    因为这里涉及到乘号的个数,那么我们可以用f[i][j]表示前i个位乘号为j个时的最大乘积 那么相比上一题就是多了一层枚举多少个乘号的循环,可以得出 f[i][r] = max(f[j - 1][r - ...

  3. centos6.5_x86_64 下安装 Oracle11gR2 的详细过程

    也可参考:http://blog.csdn.net/nhm_lxy/article/details/37813789 转自:http://www.cnblogs.com/pengineer/p/435 ...

  4. codevs——T2806 红与黑

    http://codevs.cn/problem/2806/  时间限制: 1 s  空间限制: 64000 KB  题目等级 : 白银 Silver 题解       题目描述 Descriptio ...

  5. openCV 和GDI画线效率对照

    一. 因为项目须要,原来用GDI做的画线的功能.新的项目中考虑到垮平台的问题.打算用openCV来实现.故此做个效率对照. 二. 2点做一条线,来測试效率. 用了相同的画板大小---256*256的大 ...

  6. IOS开发之蘑菇街框架

    近期公司的项目全然仿了蘑菇街client的框架,自己从网上找了一下,没有发现源代码.问遍各大QQ群也没有结果.上周五晚上一直在思考这个框架怎样搭建,周六早上有了灵感.写了一半.今天接着完好了一下. 在 ...

  7. session和cookie详解

    摘要:虽然session机制在web应用程序中被采用已经很长时间了,但是仍然有很多人不清楚session机制的本质,以至不能正确的应用这一 技术.本文将详细讨论session的工作机制并且对在Java ...

  8. shrio 加密/编码

    在涉及到密码存储问题上,应该加密/生成密码摘要存储,而不是存储明文密码.比如之前的600w csdn账号泄露对用户可能造成很大损失,因此应加密/生成不可逆的摘要方式存储. 5.1 编码/解码 Shir ...

  9. BZOJ 3940 AC自动机

    思路: 需要维护一个栈的AC自动机--. 要求出来 最后的栈顶是在自动机上的哪个节点. if(!ac.ch[st[tp-1]][a[i]-'a']) st[tp]=ac.ch[ac.f[st[tp-1 ...

  10. 创建带有IN类型参数的存储过程(四十八)

    创建带有IN类型参数的存储过程 我们经常要从数据表中删除记录,一般情况我们删除记录都是根据id来删除的,比如我们通常要输入DELETE FROM 表名 WHERE 后面跟上我们的条件,因为我们要经常写 ...