原文Draw a smooth curve through a set of 2D points with Cubic Spline

I would like to provide you with the code to draw a smooth curve through a set of 2D points with cubic spline. If we have some tabulated function yi=f(xi) it's easy to get its cubic spline interpolant with some library code. For example, you could use the code from "Numerical Recipes in C, 2-nd Edition" book - proved source of a lot of math algorithms. Cubic spline gives an excellent interpolation in the most cases.

Cubic spline is comprised from a sequence of cubic polynomials, so to draw the curve we have to approximate each partial cubic polynomial with the polyline.

Let we have a cubic polynomial defined at [x1, x2] interval.

To approximate it with polyline we should do the following:

  1. Get the deviation polynomial, i.e. the difference between the initial cubic polynomial and the straight line passing through its left and right bound points. This polynomial is either identically equal to zero or has one or two extremum(s) at [x1, x2].
  2. Evaluate the values of deviation polynomial at extremum points. It its absolute values are lower than the tolerance then the initial cubic polynomial can be approximated with a straight line passing through points (x1, y1) and (x2, y2). Otherwise
  3. Split the initial interval  [x1, x2] on two or three subintervals (depending on extremum count) and repeat the procedure recursively from (1) for each of subintervals.

///

/// Approximating Cubic Polynomial with PolyLine.

///

public static class CubicPolynomialPolylineApproximation

{

///

/// Gets the approximation of the polynomial with polyline.

///

/// The polynomial.

/// The abscissas start.

/// The abscissas stop.

/// The tolerance is the maximum distance from the cubic

/// polynomial to the approximating polyline.

///

public static Collection Approximate(Polynomial polynomial, double x1, double x2, double tolerance)

{

Debug.Assert(x1 <= x2, "x1 <= x2");

Debug.Assert(polynomial.Order == 3, "polynomial.Order == 3");

Collection points = new Collection();

// Get difference between given polynomial and the straight line passing its node points.

Polynomial deviation = DeviationPolynomial(polynomial, x1, x2);

Debug.Assert(deviation.Order == 3, "diff.Order == 3");

if (deviation[0] == 0 && deviation[1] == 0 && deviation[2] == 0 && deviation[3] == 0)

{

points.Add(new Point(x1, polynomial.GetValue(x1)));

points.Add(new Point(x2, polynomial.GetValue(x2)));

return points;

}

// Get previouse polynomial first derivative

Polynomial firstDerivative = new Polynomial(new double[] { deviation[1], 2 * deviation[2], 3 * deviation[3] });

// Difference polinomial extremums.

// Fing first derivative roots.

Complex[] complexRoots = firstDerivative.Solve();

// Get real roots in [x1, x2].

List roots = new List();

foreach (Complex complexRoot in complexRoots)

{

if (complexRoot.Imaginary == 0)

{

double r = complexRoot.Real;

if (r > x1 && r < x2)

roots.Add(r);

}

}

Debug.Assert(roots.Count > 0, "roots.Count > 0");

Debug.Assert(roots.Count <= 2, "roots.Count <= 2");

// Check difference polynomial extremal values.

bool approximates = true;

foreach (double x in roots)

{

if (Math.Abs(deviation.GetValue(x)) > tolerance)

{

approximates = false;

break;

}

}

if (approximates)

{// Approximation is good enough.

points.Add(new Point(x1, polynomial.GetValue(x1)));

points.Add(new Point(x2, polynomial.GetValue(x2)));

return points;

}

if (roots.Count == 2)

{

if (roots[0] == roots[1])

roots.RemoveAt(1);

else if (roots[0] > roots[1])

{// Sort the roots

// Swap roots

double x = roots[0];

roots[0] = roots[1];

roots[1] = x;

}

}

// Add the end abscissas.

roots.Add(x2);

// First subinterval.

Collection pts = Approximate(polynomial, x1, roots[0], tolerance);

// Copy all points.

foreach (Point pt in pts)

{

points.Add(pt);

}

// The remnant of subintervals.

for (int i = 0; i < roots.Count - 1; ++i)

{

pts = Approximate(polynomial, roots[i], roots[i + 1], tolerance);

// Copy all points but the first one.

for (int j = 1; j < pts.Count; ++j)

{

points.Add(pts[j]);

}

}

return points;

}

///

/// Gets the difference between given polynomial and the straight line passing through its node points.

///

/// The polynomial.

/// The abscissas start.

/// The abscissas stop.

///

static Polynomial DeviationPolynomial(Polynomial polynomial, double x1, double x2)

{

double y1 = polynomial.GetValue(x1);

double y2 = polynomial.GetValue(x2);

double a = (y2 - y1) / (x2 - x1);

double b = y1 - a * x1;

if (a != 0)

return polynomial.Subtract(new Polynomial(new double[] { b, a }));

else if (b != 0)

return polynomial.Subtract(new Polynomial(new double[] { b }));

else

return polynomial;

}

}

In the code above I'm using the helper class Polynomial encapsulating operations on polynomials including addition, subtraction, dividing, root finding, etc. It's ported from "Numerical Recipes in C, 2-nd Edition" book with some additions and bug fixes.

The sample supplied with this article is Visual Studio 2008 solution targeted to .NET 3.5. It contains WPF Windows Application project designed to demonstrate some curves drawn with cubic spline. You can select one of the curves from Combo Box at the top of the Window, experiment with point counts, tolerance and set appropriate XY Scales. You can even add you own curve, but this requires coding as follows:

    1. Add your curve name to CurveNames enum.
    2. Add your curve implementation to Curves region.
      Add call to your curve to OnRender override.
    3. In the sample I use Path elements on the custom Canvas to render the curve but in real application you would probably use some more effective approach like visual layer rendering.

使用Cubic Spline通过一组2D点绘制平滑曲线的更多相关文章

  1. 平滑算法:三次样条插值(Cubic Spline Interpolation)

    https://blog.csdn.net/left_la/article/details/6347373 感谢强大的google翻译. 我从中认识到了航位推算dead reckoning,立方体样条 ...

  2. iOS开发——图层OC篇&Quartz 2D各种绘制实例

    Quartz 2D各种绘制实例 首先说一下,本篇文章只是介绍怎么使用Quartz 2D绘制一些常用的图像效果,关于Quartz和其他相关技术请查看笔者之前写的完整版(Quartz 2D详解) 一:画线 ...

  3. emwin之2D图形绘制问题

    @2018-09-03 [问题] 在 WM_PAINT 消息分支里绘制2D图形可以正常显示,而在外部函数或按钮按下事件的响应消息分支下等处,绘制2D图形则不显示. [解决] 在除消息WM_PAINT分 ...

  4. Opencv 三次样条曲线(Cubic Spline)插值

    本系列文章由 @YhL_Leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/47707679 1.样条曲线简介 样条曲 ...

  5. 【js类库Raphaël】使用raphael.js根据点坐标绘制平滑曲线

     一.可供参考的文档资料. raphaeljs官网:http://raphaeljs.com/ w3c关于path的介绍:http://www.w3.org/TR/2003/REC-SVG11-200 ...

  6. Qt 绘制平滑曲线

    本文介绍在 Qt 中绘制平滑曲线的实现,调用下面的函数 SmoothCurveGenerator::generateSmoothCurve(points) 即可.默认曲线的 2 个顶点之间被分割为 1 ...

  7. Direct3D 2D文本绘制

    现在学习下Direct3D在窗口中绘制一些文本信息,ID3DXFont接口负责创建字体和绘制二维的文本.我们介绍下ID3DXFont的用法. 1.创建LPD3DXFONT接口 LPD3DXFONT g ...

  8. iOS - Quartz 2D 画板绘制

    1.绘制画板 1.1 绘制简单画板 PaintBoardView.h @interface PaintBoardView : UIView @end PaintBoardView.m @interfa ...

  9. QT5之2D绘图-绘制路径

    在绘制一个复杂的图形的时候,如果你需要重复绘制一个这样的图形,就可以使用到QPainterPath类,然后使用QPainter::drawPath()来进行绘制. QPainterPath类为绘制操作 ...

随机推荐

  1. 2016.3.14__CSS 定位__第六天

    假设您认为这篇文章还不错.能够去H5专题介绍中查看很多其它相关文章. CSS 定位机制 CSS中一共同拥有三种基本定位机制:普通流.浮动.绝对定位. 假设不进行专门指定.全部的标签都在普通流中定位. ...

  2. C#趣味程序---个位数为6,且能被3整出的五位数

    using System; namespace ConsoleApplication1 { class Program { static void Main(string[] args) { int ...

  3. USACO--2.1The Castle

    思路:这个题目难在建图,開始的时候我想把每一个房间没有墙的面求出来,然后再和他邻近的房间加上一条边进行建图,后面发现要通过题目给定的条件求出房间那个面没有墙是十分困难的:后面參考了别人的思路,我们记录 ...

  4. Linux安装.Net core 环境并运行项目

    原文:Linux安装.Net core 环境并运行项目 一 安装环境 1.  从微软官网下载 Linux版本的.NetCoreSdk 2.0 安装包 打开终端: 第一步: sudo yum insta ...

  5. .net core 下监控Sql的执行语句

    原文:.net core 下监控Sql的执行语句 最近在编写.net core程序,因为数据库从Sql Server 切换到 MySql的原因,无法直接查看sql的具体语句,随着业务量的剧增,痛苦也与 ...

  6. [GeekBand] C++继承关系下虚函数内存分布

    本文参考文献:GeekBand课堂内容,授课老师:侯捷 :深度探索C++对象模型(侯捷译) :网络资料,如:http://blog.csdn.net/sanfengshou/article/detai ...

  7. 【b604】2K进制数

    Time Limit: 1 second Memory Limit: 50 MB [问题描述] 设r是个2K进制数,并满足以下条件: (1)r至少是个2位的2K进制数. (2)作为2K进制数,除最后一 ...

  8. sparksql 动态设置schema将rdd转换成dataset/dataframe

    java public class DynamicDemo { private static SparkConf conf = new SparkConf().setAppName("dyn ...

  9. WM_NOTIFY消息流程实例分析

    我们以CListCtrl控件为例来分析WM_NOTIFY消息. CListCtrl控件在Report样式下会包含CHeaderCtrl标头控件,即CHeaderCtrl标头控件为CListCtrl控件 ...

  10. 入坑cordova

    原文:入坑cordova 因项目需要入坑cordova,奔跑吧骚年,目前只是要求安卓平台,下面都是以安卓为例 最好的学习资料还是官网. https://cordova.apache.org/ http ...