主要利用PICK定理与边点数上的GCD的关系求解。

三角形一条边上的所有整数点(包括顶点)可以首先将这条边移到(0, 0)->(x, y)。这时,(x/gcd(x, y), y/gcd(x, y))肯定在这条边上,并且是整数点,其余所有整数点的可以表示为k(x/gcd(x, y), y/gcd(x, y))。所以所有的整数点个数为gcd(x, y) + 1。即:

b = gcd(x, y) + 1

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath> using namespace std;
const int MAX=110;
struct point {
double x,y;
}p[MAX];
int n; int gcd(int x,int y){
while(y){
int tmp=y;
y = x % y;
x = tmp;
}
return x;
} int main(){
int t; int cas=0;
cin>>t;
while(t--){
cas++;
cin>>n;
double tx,ty;
for(int i=0;i<n;i++){
cin>>tx>>ty;
if(i==0){
p[i].x=tx; p[i].y=ty;
}
else{
p[i].x=p[i-1].x+tx;
p[i].y=p[i-1].y+ty;
}
}
p[n]=p[0];
double ans=0;
for(int i=0;i<n;i++)
ans+=(p[i].x*p[i+1].y-p[i].y*p[i+1].x);
ans=(ans)/2;
int edg=0,in=0;
for(int i=0;i<n;i++)
edg+=gcd(abs((int)(p[i].x-p[i+1].x)),abs(int(p[i].y-p[i+1].y)));
in=(((ans+1)*2-edg)/2);
printf("Scenario #%d:\n",cas);
printf("%d %d %.1lf\n",in,edg,ans);
printf("\n");
}
return 0;
}

  

POJ 1265的更多相关文章

  1. poj 1265 Area 面积+多边形内点数

    Area Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5861   Accepted: 2612 Description ...

  2. Area POJ - 1265 -皮克定理-叉积

    Area POJ - 1265 皮克定理是指一个计算点阵中顶点在格点上的多边形面积公式,该公式可以表示为2S=2a+b-2, 其中a表示多边形内部的点数,b表示多边形边界上的点数,S表示多边形的面积. ...

  3. POJ 1265 Area (Pick定理 & 多边形面积)

    题目链接:POJ 1265 Problem Description Being well known for its highly innovative products, Merck would d ...

  4. poj 1265 Area (Pick定理+求面积)

    链接:http://poj.org/problem?id=1265 Area Time Limit: 1000MS   Memory Limit: 10000K Total Submissions:  ...

  5. poj 1265 Area( pick 定理 )

    题目:http://poj.org/problem?id=1265 题意:已知机器人行走步数及每一步的坐标   变化量 ,求机器人所走路径围成的多边形的面积.多边形边上和内部的点的数量. 思路:1.以 ...

  6. poj 1265 Area【计算几何:叉积计算多边形面积+pick定理计算多边形内点数+计算多边形边上点数】

    题目:http://poj.org/problem?id=1265 Sample Input 2 4 1 0 0 1 -1 0 0 -1 7 5 0 1 3 -2 2 -1 0 0 -3 -3 1 0 ...

  7. POJ 1265 Area POJ 2954 Triangle Pick定理

    Area Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5227   Accepted: 2342 Description ...

  8. poj 1265&&poj 2954(Pick定理)

    Area Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5811   Accepted: 2589 Description ...

  9. POJ 1265 Area

    有一种定理,叫毕克定理....                             Area Time Limit: 1000MS   Memory Limit: 10000K Total Sub ...

  10. poj 1265 Area(Pick定理)

    Area Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5666   Accepted: 2533 Description ...

随机推荐

  1. mount -o remount,rw /

    init=/bin/sh mount -o remount,rw /; sed -i 's/指定字符串/&希望插入的字符串/' 文件 在一文件中指定的字符后插入内容 sed -i 's/指定的 ...

  2. codevs1222 信与信封问题

    1222 信与信封问题  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond     题目描述 Description John先生晚上写了n封信,并相应地写了 ...

  3. 2019手机号码JS正则表达式

    前端的正则表达式验证往往是最繁多最复杂的,所以整理了一些最近自己常用的正则表达式,希望能对大家有所帮助! /* 合法uri */ export function validateURL(textval ...

  4. [BZOJ1601] 灌水

    难点:找到正确方式建图 知识点:Kruskal 分析:这种题肯定要把点权转换到边权上,但肯定无法搞到和其他点相连的边上,怎么办呢?那就再造一个点呗,这个“超级点”和所有点相连,且边权=点权,于是就可以 ...

  5. 显示程序输出并复制到文件(tee 命令)

    Linux tee命令用于读取标准输入的数据,并将其内容输出成文件. tee指令会从标准输入设备读取数据,将其内容输出到标准输出设备,同时保存成文件. 语法 tee [-ai][--help][--v ...

  6. U - Three displays

    Problem description It is the middle of 2018 and Maria Stepanovna, who lives outside Krasnokamensk ( ...

  7. Jenkins构建项目,JAVA_HOME is not defined correctly

    好久都没有更新了,由于职位调整,开始捣鼓持续集成的东西了.jenkins的基本安装配置网上有很多教程,不用多讲了,就记录下我在使用过程中遇到的一些问题.话说这个jenkins环境以及安装好了有一段时间 ...

  8. Android几种常见的多渠道(批量)打包方式介绍

    多渠道打包,主要是为了统计不同的渠道上包的下载数量,渠道越多,我们需要打的包数量越多,这个时候,我们没法去使用单纯的手动打包去一个一个的生成不同的渠道包,我们需要更高效的打包方式. 声明渠道方式一: ...

  9. 通过Web Service实现IP地址查询功能

    实例01 实现一个简单的Web服务访问 本实例将实现IP地址查询接口服务,根据用户传入的IP地址返回IP所在的省.市.地区,实例中将会用到IP地址库用于查询信息,由于数据较多,所以读者可在光盘资源文件 ...

  10. spring中的prop、set、list、map

    props.set.list.map这些事spring配置文件中很常见的标签,下面说下各自的适用场合. props:用于键值对,建和值都为string类型. <property name=&qu ...