【链接】 链接

【题意】

在这里输入题意

【题解】

设f[i]表示在第i个地方设立一个仓库,且前面符合要求的最小花费。

$f[i] = min(f[j] + c[i] + dis[i]*(sump[i] - sump[j])-(sumdp[i]-sumdp[j]));$
其中
sump[]是p[]的前缀和,即$sump[i] = p[1]+p[2]+..+p[i]$
sumdp[]是x[]*p[]的前缀和,即$sumdp[i] = x[1]*p[1]+x[2]*p[2]+...+x[i]*p[i]$
这个表示j+1..i这一段的所有物品都运输到i这个仓库。
自己用笔写一下就知道了。
显然是个N^2算法。
斜率优化。
设x

【错的次数】

在这里输入错的次数

【反思】

在这里输入反思

【代码】

#include <bits/stdc++.h>
#define ll long long
using namespace std; const int N = 1e6; int n,dl[N+10],h,t;
ll dis[N+10],p[N+10],c[N+10],sump[N+10],sumdp[N+10];
ll dp[N+10]; double ju(int x,int y)
{
double fenzi = dp[y] + sumdp[y] - (dp[x]+sumdp[x]);
double fenmu = sump[y] - sump[x];
return fenzi/fenmu;
} int main()
{
//freopen("F:\\rush.txt","r",stdin);
scanf("%d",&n);
for (int i = 1;i <= n;i++)
{
scanf("%lld%lld%lld",&dis[i],&p[i],&c[i]);
sump[i] = sump[i-1] + p[i];
sumdp[i] = sumdp[i-1] + dis[i]*p[i];
} for (int i = 1;i <= N;i++) dp[i] = 1e18;
h = 1,t = 1;
dl[1] = 0;
for (int i = 1;i <= n;i++)
{
while (h < t && ju(dl[h],dl[h+1])<dis[i]) h++;
int j = dl[h];
dp[i] = min(dp[i],dp[j] + c[i] +
dis[i]*(sump[i]-sump[j])-(sumdp[i]-sumdp[j]));
while (h < t && ju(dl[t-1],dl[t]) > ju(dl[t],i)) t--;
dl[++t] = i;
}
printf("%lld\n",dp[n]);
return 0;
}

【BZOJ 1096】[ZJOI2007]仓库建设的更多相关文章

  1. BZOJ 1096: [ZJOI2007]仓库建设 [斜率优化DP]

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4201  Solved: 1851[Submit][Stat ...

  2. bzoj 1096: [ZJOI2007]仓库建设 斜率優化

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2242  Solved: 925[Submit][Statu ...

  3. bzoj 1096 [ZJOI2007]仓库建设(关于斜率优化问题的总结)

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3234  Solved: 1388[Submit][Stat ...

  4. BZOJ 1096: [ZJOI2007]仓库建设( dp + 斜率优化 )

    dp(v) = min(dp(p)+cost(p,v))+C(v) 设sum(v) = ∑pi(1≤i≤v), cnt(v) = ∑pi*xi(1≤i≤v), 则cost(p,v) = x(v)*(s ...

  5. 边坡优化主题5——bzoj 1096 [ZJOI2007]仓库建设 解决问题的方法

    [原标题] 1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 1998  Solved: 816 [id=10 ...

  6. BZOJ 1096 [ZJOI2007]仓库建设(斜率优化DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1096 [题目大意] 有个斜坡,有n个仓库,每个仓库里面都有一些物品,物品数目为p,仓库 ...

  7. BZOJ 1096 ZJOI2007 仓库建设 边坡优化

    标题效果:特定n植物,其中一些建筑仓库,有一点使,假设没有仓库仓库向右仓库.最低消费要求 非常easy边坡优化--在此之前刷坡优化的情况下,即使这道题怎么错过 订购f[i]作为i点建设化妆i花费所有安 ...

  8. ●BZOJ 1096 [ZJOI2007]仓库建设

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1096 题解: 斜率优化DP $(d_i:i 位置到1位置的距离,p_i:i位置的成品数量,c ...

  9. BZOJ 1096 [ZJOI2007]仓库建设:斜率优化dp

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1096 题意: 有n个工厂,从左往右排成一排,分别编号1到n. 每个工厂里有p[i]件产品, ...

  10. bzoj 1096: [ZJOI2007]仓库建设【斜率优化】

    好眼熟啊 直接dp显然很难算,所以设val为只在n点建一个仓库的费用,然后设f[i]为在i~n点建若干仓库并且i点一定建一个仓库的最大省钱数 转移很显然,设s为p的前缀和,f[i]=max{f[j]+ ...

随机推荐

  1. MDL--元数据锁的锁请求与锁等待+元数据锁类对象

    1 元数据锁的锁请求与锁等待     元数据锁在MySQL Server层,依照锁的状态被细分为两种.一种是已经施加的锁.一种是等待施加的锁即锁请求,这样被区分的原因,如MySQL对"cla ...

  2. 微软自拍应用iOS版公布

    微软自拍(Microsoft Selfie)主要是支持自拍后还能加强自拍效果的功能. 只是和其它自拍应用不同的是.Microsoft Selfie 利用了机器学习来增强照片,应用会"考虑年龄 ...

  3. 内存卡(TF或其它)的标准

    内存卡(TF或其它)的标准 来源 https://zh.wikipedia.org/wiki/SDXC 一般的内存卡是SD2.0的规范的,就是 Class10(10M/sec)或低于 Class10 ...

  4. js09--函数 call apply

    <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/stri ...

  5. HDU4630-No Pain No Game(离线,线段树)

    Problem Description Life is a game,and you lose it,so you suicide. But you can not kill yourself bef ...

  6. 腾讯2016实习生面试经验(已经拿到offer)

      忐忑了好几天,今天最终收到深圳总部的电话.允许录用我为2016年实习生,感觉整个天空都放晴了.坐标:武汉大学,给大家说说我的面试经历吧,我投的是软件开发--应用开发方向. 一.校招流程 投递简历- ...

  7. Leetcode:populating_next_right_pointers_in_each_node题解

    一.     题目 对于结构体:struct TreeLinkNode { TreeLinkNode *left; TreeLinkNode *right; TreeLinkNode *next; } ...

  8. ImportError: No module named tornado.ioloop 记录过程

    ImportError: No module named tornado.ioloop 记录过程 安装 pycurl    pip install pycurl 报错 'curl-config' no ...

  9. ios系统和某些移动端background-attachment:fixed不兼容性

    固定背景不动:background-attachment:fixed; ios系统和某些移动端background-attachment:fixed不兼容性,没有任何效果,但可以hack一下就可以了, ...

  10. django 简单会议室预约(2)

    --我们先打开settings.py 配置文件: import os #指明django APP目录路径 BASE_DIR = os.path.dirname(os.path.dirname(os.p ...