1. 简介

三对角线矩阵(Tridiagonal Matrix),结构如公式(1)所示:

aixi−1+bixi+cixx+1=di(1)

其中a1=0,cn=0。写成矩阵形式如(2):

⎡⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢b1a20c1b2a3c2b3⋱⋱⋱cn−1an0bn⎤⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎡⎣⎢⎢⎢⎢⎢⎢⎢x1x2x3⋮xn⎤⎦⎥⎥⎥⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎢⎢⎢d1d2d3⋮dn⎤⎦⎥⎥⎥⎥⎥⎥⎥(2)

常用的解法为Thomas algorithm,又称为The Tridiagonal matrix algorithm(TDMA). 它是一种高斯消元法的解法。分为两个阶段:向前消元(Forward Elimination)和回代(Back Substitution)。

  • 向前消元(Forward Elimination):

    c′i=⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪cibicibi−aic′i−1;i=1;i=2,3,…,n−1(3)
    d′i=⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪dibidi−aid′i−1bi−aic′i−1;i=1;i=2,3,…,n.(4)

  • 回代(Back Substitution):

    xn=d′nxi=d′i−c′ixi+1;i=n−1,n−2,…,1.(5)

2.代码

  • 维基百科提供的C语言版本:
void solve_tridiagonal_in_place_destructive(float * restrict const x, const size_t X, const float * restrict const a, const float * restrict const b, float * restrict const c)
{
/*
solves Ax = v where A is a tridiagonal matrix consisting of vectors a, b, c
x - initially contains the input vector v, and returns the solution x. indexed from 0 to X - 1 inclusive
X - number of equations (length of vector x)
a - subdiagonal (means it is the diagonal below the main diagonal), indexed from 1 to X - 1 inclusive
b - the main diagonal, indexed from 0 to X - 1 inclusive
c - superdiagonal (means it is the diagonal above the main diagonal), indexed from 0 to X - 2 inclusive Note: contents of input vector c will be modified, making this a one-time-use function (scratch space can be allocated instead for this purpose to make it reusable)
Note 2: We don't check for diagonal dominance, etc.; this is not guaranteed stable
*/ /* index variable is an unsigned integer of same size as pointer */
size_t ix; c[0] = c[0] / b[0];
x[0] = x[0] / b[0]; /* loop from 1 to X - 1 inclusive, performing the forward sweep */
for (ix = 1; ix < X; ix++) {
const float m = 1.0f / (b[ix] - a[ix] * c[ix - 1]);
c[ix] = c[ix] * m;
x[ix] = (x[ix] - a[ix] * x[ix - 1]) * m;
} /* loop from X - 2 to 0 inclusive (safely testing loop condition for an unsigned integer), to perform the back substitution */
for (ix = X - 1; ix-- > 0; )
x[ix] = x[ix] - c[ix] * x[ix + 1];
}
  • 本人基于Opencv的版本:
bool caltridiagonalMatrices(
cv::Mat_<double> &input_a,
cv::Mat_<double> &input_b,
cv::Mat_<double> &input_c,
cv::Mat_<double> &input_d,
cv::Mat_<double> &output_x )
{
/*
solves Ax = v where A is a tridiagonal matrix consisting of vectors input_a, input_b, input_c, and v is a vector consisting of input_d.
input_a - subdiagonal (means it is the diagonal below the main diagonal), indexed from 1 to X - 1 inclusive
input_b - the main diagonal, indexed from 0 to X - 1 inclusive
input_c - superdiagonal (means it is the diagonal above the main diagonal), indexed from 0 to X - 2 inclusive
input_d - the input vector v, indexed from 0 to X - 1 inclusive
output_x - returns the solution x. indexed from 0 to X - 1 inclusive
*/ /* the size of input_a is 1*n or n*1 */
int rows = input_a.rows;
int cols = input_a.cols; if ( ( rows == 1 && cols > rows ) ||
(cols == 1 && rows > cols ) )
{
const int count = ( rows > cols ? rows : cols ) - 1; output_x = cv::Mat_<double>::zeros(rows, cols); cv::Mat_<double> cCopy, dCopy;
input_c.copyTo(cCopy);
input_d.copyTo(dCopy); if ( input_b(0) != 0 )
{
cCopy(0) /= input_b(0);
dCopy(0) /= input_b(0);
}
else
{
return false;
} for ( int i=1; i < count; i++ )
{
double temp = input_b(i) - input_a(i) * cCopy(i-1);
if ( temp == 0.0 )
{
return false;
} cCopy(i) /= temp;
dCopy(i) = ( dCopy(i) - dCopy(i-1)*input_a(i) ) / temp;
} output_x(count) = dCopy(count);
for ( int i=count-2; i > 0; i-- )
{
output_x(i) = dCopy(i) - cCopy(i)*output_x(i+1);
}
return true;
}
else
{
return false;
}
}

参考文献:https://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm

Opencv 三对角线矩阵(Tridiagonal Matrix)解法之(Thomas Algorithm)的更多相关文章

  1. 三对角矩阵(Tridiagonal Matrices)的求法:Thomas Algorithm(TDMA)

    转载http://www.cnblogs.com/xpvincent/archive/2013/01/25/2877411.html 做三次样条曲线时,需要解三对角矩阵(Tridiagonal Mat ...

  2. [OpenCV] Basic data types - Matrix

    http://docs.opencv.org/2.4.13/ Basis 矩形 "modules/core/src/drawing.cpp" CV_IMPL void cvRect ...

  3. QuantStart量化交易文集

    Over the last seven years more than 200 quantitative finance articles have been written by members o ...

  4. [LeetCode] Toeplitz Matrix 托普利兹矩阵

    A matrix is Toeplitz if every diagonal from top-left to bottom-right has the same element. Now given ...

  5. OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波

    http://blog.csdn.net/chenyusiyuan/article/details/8710462 OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波 201 ...

  6. Opencv 三次样条曲线(Cubic Spline)插值

    本系列文章由 @YhL_Leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/47707679 1.样条曲线简介 样条曲 ...

  7. 蒟阵P3390 【模板】矩阵快速幂

    代码如下: #include<iostream> #include<cstdio> #include<cstdlib> #include<cmath> ...

  8. CUDA Samples: matrix multiplication(C = A * B)

    以下CUDA sample是分别用C++和CUDA实现的两矩阵相乘运算code即C= A*B,CUDA中包含了两种核函数的实现方法,第一种方法来自于CUDA Samples\v8.0\0_Simple ...

  9. opencv的使用——经典大坑

    视频或相机中读入的帧数不对,或有空帧 image check from cap or video: you must check wether each frame is not empty when ...

随机推荐

  1. ios兼容 input输入时弹出键盘框 页面整体上移键盘框消失后在ios上页面不能回弹的问题

    前端h5混合开发手机端ios  当有input输入时,手机下方弹出键盘使页面上移,当输入完成,键盘消失后页面显示回到原位,但实际不能点击(可点击上方区域,有反应),也就是说实际是没有回弹. 解决办法: ...

  2. BZOJ 4006 [JLOI2015]管道连接(斯坦纳树+子集DP)

    明显是一道斯坦纳树的题. 然而这题只需要属性相同的点互相连接. 我们还是照常先套路求出\(ans[s]\). 然后对\(ans[s]\)做子集DP即可. 具体看代码. #include<iost ...

  3. HDU1061 - Rightmost Digit

    Given a positive integer N, you should output the most right digit of N^N. Input The input contains ...

  4. 代理上网环境配置docker私有库

    最后更新时间:2018年12月27日 Docker使用代理上网去 pull 各类 images,需要做如下配置: 创建目录: /etc/systemd/system/docker.service.d ...

  5. markdown图片设置

    工具:typora 1. 设置图片大小(本节引用自 https://support.typora.io/Resize-Image/) Typora允许使用<img>标签显示图像,也可用于调 ...

  6. vue实现双向绑定原理

  7. Spring Security中的MD5盐值加密

    在 spring Security 文档中有这么一句话: "盐值的原理非常简单,就是先把密码和盐值指定的内容合并在一起,再使用md5对合并后的内容进行演算,这样一来,就算密码是一个很常见的字 ...

  8. 数据库-mongodb-聚合与map reduce

    分组统计:group() 简单聚合:aggregate() 强大统计:mapReduce() Group函数: 1.不支持集群.分片,无法分布式计算 2.需要手写聚合函数的业务逻辑 curr指当前行, ...

  9. 洛谷——T P2136 拉近距离

    https://www.luogu.org/problem/show?pid=2136 题目背景 我是源点,你是终点.我们之间有负权环. ——小明 题目描述 在小明和小红的生活中,有N个关键的节点.有 ...

  10. iOS开发中的NSDateFormatter日期格式解析总结

    在工作中,常常遇到将时间解析出来转换成自己相应要求的时间格式,之前也有收集相应的转换格式,如今将自己收集的一部分了做个分享,应该比較完好了,欢迎大家继续补充 年 y 将年份 (0-9) 显示为不带前导 ...