codevs1281 矩阵乘法 快速幂 !!!手写乘法取模!!! 练习struct的构造函数和成员函数
对于这道题目以及我的快速幂以及我的一节半晚自习我表示无力吐槽,,
首先矩阵乘法和快速幂没必要太多说吧,,嗯没必要,,我相信没必要,,实在做不出来写两个矩阵手推一下也就能理解矩阵的顺序了,要格外注意一些细节,比如快速幂时ans矩阵的初始化方式,快速幂的次数,矩阵乘法过程中对临时矩阵的清零,最后输出结果时的初始矩阵。。。矩阵快速幂好理解但是细节还是有点小坑的。。
下面就是满满的槽点,,高能慎入!!!
对于这个题目要求矩阵过程中对m取模,结果对g取模,我表示难以接受,,上来没看清题直接wa19个点,另,经本人实测,在矩阵中直接对m和g取模会直接挂掉,
历经千辛万苦终于改对之后,,发现wa了3个点,,经过eirlys(某坑货)的提示发现过程中乘法会爆long long,于是便一脸mb,脑抽的改成unsign long long后依旧过不了,认真的去看了题解,,然后整个人就呵呵哒了,,题解告诉我要手写快速乘法。。。。。。
真是够了。。。。
#include <cstdio>
#include <cstring>
#include <algorithm> struct data {
long long f[][];
data (void) {
memset(f, , sizeof(f));
f[][] = ;
f[][] = ;
f[][] = ;
}
void clear(void) {
memset(f, , sizeof(f));
}
void print(void) {
for (int i = ; i < ; i++) {
for (int j = ; j < ; j++) printf("%lld ", f[i][j]);
printf("\n");
}
printf("\n");
}
}; long long m, a, c, x0, n, g;
data cur; long long mu (long long a1, long long a2) {
long long ans = ;
while (a2 > ) {
if (a2 & ) ans = (ans + a1) % m;
a1 = (a1 + a1) % m;
a2 >>= ;
}
return (ans);
} data operator * (data a1, data a2) {
data t;
t.clear();
for (int i = ; i < ; i++)
for (int j = ; j < ; j++)
for (int k = ; k < ; k++) {
t.f[i][j] = (t.f[i][j] + mu(a1.f[i][k], a2.f[k][j]) % m) % m;
}
return (t);
} data qpow(data x, long long v) {
data ans;
while (v > ) {
if (v & ) ans = ans * x;
x = x * x;
v >>= ;
}
return (ans);
} int main () {
scanf("%lld %lld %lld %lld %lld %lld", &m, &a, &c, &x0, &n, &g);
cur.clear();
cur.f[][] = ;
cur.f[][] = a % m;
cur.f[][] = ;
cur.f[][] = ;
cur = qpow(cur, n);
//cur.print();
long long ans = (mu(x0,cur.f[][]) % m + mu(c, cur.f[][] % m)) % m;
ans = ((ans % g) + g) % g;
printf("%lld", ans);
return ;
}
codevs1281 矩阵乘法 快速幂 !!!手写乘法取模!!! 练习struct的构造函数和成员函数的更多相关文章
- CodeForces 450B (矩阵快速幂模板题+负数取模)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=51919 题目大意:斐波那契数列推导.给定前f1,f2,推出指定第N ...
- 洛谷 P4910 帕秋莉的手环 矩阵乘法+快速幂详解
矩阵快速幂解法: 这是一个类似斐波那契数列的矩乘快速幂,所以推荐大家先做一下下列题目:(会了,差不多就是多倍经验题了) 注:如果你不会矩阵乘法,可以了解一下P3390的题解 P1939 [模板]矩阵加 ...
- 整数快速乘法/快速幂+矩阵快速幂+Strassen算法
快速幂算法可以说是ACM一类竞赛中必不可少,并且也是非常基础的一类算法,鉴于我一直学的比较零散,所以今天用这个帖子总结一下 快速乘法通常有两类应用:一.整数的运算,计算(a*b) mod c 二.矩 ...
- Qbxt 模拟赛 Day4 T2 gcd(矩阵乘法快速幂)
/* 矩阵乘法+快速幂. 一开始迷之题意.. 这个gcd有个规律. a b b c=a*x+b(x为常数). 然后要使b+c最小的话. 那x就等于1咯. 那么问题转化为求 a b b a+b 就是斐波 ...
- 乘方快速幂 OR 乘法快速幂
关于快速幂这个算法,已经不想多说,很早也就会了这个算法,但是原来一直靠着模板云里雾里的,最近重新学习,发现忽视了一个重要的问题,就是若取模的数大于int型,即若为__int64的时候应该怎么办,这样就 ...
- Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂)
Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂) Description 广义的斐波那契数列是指形如\[A_n=p*a_{n-1}+q*a_{n-2}\]的数列.今给定数列的两系数p和q, ...
- 矩阵乘法快速幂 codevs 1732 Fibonacci数列 2
1732 Fibonacci数列 2 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题解 查看运行结果 题目描述 Description 在“ ...
- ACM学习历程—HDU5667 Sequence(数论 && 矩阵乘法 && 快速幂)
http://acm.hdu.edu.cn/showproblem.php?pid=5667 这题的关键是处理指数,因为最后结果是a^t这种的,主要是如何计算t. 发现t是一个递推式,t(n) = c ...
- [vijos1725&bzoj2875]随机数生成器<矩阵乘法&快速幂&快速乘>
题目链接:https://vijos.org/p/1725 http://www.lydsy.com/JudgeOnline/problem.php?id=2875 这题是前几年的noi的题,时间比较 ...
随机推荐
- [luogu2579 ZJOI2005] 沼泽鳄鱼(矩阵快速幂)
传送门 题目描述 潘塔纳尔沼泽地号称世界上最大的一块湿地,它地位于巴西中部马托格罗索州的南部地区.每当雨季来临,这里碧波荡漾.生机盎然,引来不少游客. 为了让游玩更有情趣,人们在池塘的中央建设了几座石 ...
- 笔记本安装Archlinux笔记
同步更新于wendster大佬的个人博客 搬运自我的洛谷博客 可能会不定期更新! 因为前几天给我的小炸鸡加了一根内存条:而且先前装的Xubuntu是32位的,使用极其不方便:再加上wendster大佬 ...
- Vue官网todoMVC示例
这个示例是模仿官网示例样式和功能用我自己的方式写的,基本上没有看官网的源码,只参考自定义指令.让我们一步步来探讨一下.官网demo 要实现的功能 单条添加todo 单条删除todo 双击编辑todo ...
- Qt编程—去掉标题栏和设置窗口透明用法
学习Qt编程,有时候我们很想做出好看又比较炫的画面,这时就常用到qt上的一些技巧. 这里我以一个小例子来展示qt的这些技巧,此qt编程写的,如图:(去掉标题栏和设置窗口透明后) 代码实现部分: .h文 ...
- myeclipse反编译安装 jd-gui.exe下载
一:在线安装 1.Help->Install New Site Name:** Location:http://jd.benow.ca/jd-eclipse/update 二:手动安装 1.下载 ...
- VUE:模板语法(小白自学)
VUE:模板语法 一:何为声明式 安装规定的语法,去实现一些效果(不需要管流程). 二:模板语法 <!DOCTYPE html> <html> <head> < ...
- 王立平-bmp.compress()
bmp.compress(Bitmap.CompressFormat.JPEG, 30, baos); //30 是压缩率,表示压缩70%; 假设不压缩是100,表示压缩率为0
- OpenCV基础篇之读取显示图片
程序及分析 /* * FileName : read.cpp * Author : xiahouzuoxin @163.com * Version : v1.0 * Date : Tue 13 May ...
- js mudules.js
var InsertRow={ isMoveRow:false, // 是否存在动态移动行 curSelRowIndex:"", // 当前选中行序号 prevSelRowInde ...
- App.config配置详解
经上一篇文章https://www.cnblogs.com/luna-hehe/p/9104701.html发现自己对配置文件很是不了解,同样还是查了半天终于发现另一片宝贵文档https://www. ...