codevs1281 矩阵乘法 快速幂 !!!手写乘法取模!!! 练习struct的构造函数和成员函数
对于这道题目以及我的快速幂以及我的一节半晚自习我表示无力吐槽,,
首先矩阵乘法和快速幂没必要太多说吧,,嗯没必要,,我相信没必要,,实在做不出来写两个矩阵手推一下也就能理解矩阵的顺序了,要格外注意一些细节,比如快速幂时ans矩阵的初始化方式,快速幂的次数,矩阵乘法过程中对临时矩阵的清零,最后输出结果时的初始矩阵。。。矩阵快速幂好理解但是细节还是有点小坑的。。
下面就是满满的槽点,,高能慎入!!!
对于这个题目要求矩阵过程中对m取模,结果对g取模,我表示难以接受,,上来没看清题直接wa19个点,另,经本人实测,在矩阵中直接对m和g取模会直接挂掉,
历经千辛万苦终于改对之后,,发现wa了3个点,,经过eirlys(某坑货)的提示发现过程中乘法会爆long long,于是便一脸mb,脑抽的改成unsign long long后依旧过不了,认真的去看了题解,,然后整个人就呵呵哒了,,题解告诉我要手写快速乘法。。。。。。
真是够了。。。。
#include <cstdio>
#include <cstring>
#include <algorithm> struct data {
long long f[][];
data (void) {
memset(f, , sizeof(f));
f[][] = ;
f[][] = ;
f[][] = ;
}
void clear(void) {
memset(f, , sizeof(f));
}
void print(void) {
for (int i = ; i < ; i++) {
for (int j = ; j < ; j++) printf("%lld ", f[i][j]);
printf("\n");
}
printf("\n");
}
}; long long m, a, c, x0, n, g;
data cur; long long mu (long long a1, long long a2) {
long long ans = ;
while (a2 > ) {
if (a2 & ) ans = (ans + a1) % m;
a1 = (a1 + a1) % m;
a2 >>= ;
}
return (ans);
} data operator * (data a1, data a2) {
data t;
t.clear();
for (int i = ; i < ; i++)
for (int j = ; j < ; j++)
for (int k = ; k < ; k++) {
t.f[i][j] = (t.f[i][j] + mu(a1.f[i][k], a2.f[k][j]) % m) % m;
}
return (t);
} data qpow(data x, long long v) {
data ans;
while (v > ) {
if (v & ) ans = ans * x;
x = x * x;
v >>= ;
}
return (ans);
} int main () {
scanf("%lld %lld %lld %lld %lld %lld", &m, &a, &c, &x0, &n, &g);
cur.clear();
cur.f[][] = ;
cur.f[][] = a % m;
cur.f[][] = ;
cur.f[][] = ;
cur = qpow(cur, n);
//cur.print();
long long ans = (mu(x0,cur.f[][]) % m + mu(c, cur.f[][] % m)) % m;
ans = ((ans % g) + g) % g;
printf("%lld", ans);
return ;
}
codevs1281 矩阵乘法 快速幂 !!!手写乘法取模!!! 练习struct的构造函数和成员函数的更多相关文章
- CodeForces 450B (矩阵快速幂模板题+负数取模)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=51919 题目大意:斐波那契数列推导.给定前f1,f2,推出指定第N ...
- 洛谷 P4910 帕秋莉的手环 矩阵乘法+快速幂详解
矩阵快速幂解法: 这是一个类似斐波那契数列的矩乘快速幂,所以推荐大家先做一下下列题目:(会了,差不多就是多倍经验题了) 注:如果你不会矩阵乘法,可以了解一下P3390的题解 P1939 [模板]矩阵加 ...
- 整数快速乘法/快速幂+矩阵快速幂+Strassen算法
快速幂算法可以说是ACM一类竞赛中必不可少,并且也是非常基础的一类算法,鉴于我一直学的比较零散,所以今天用这个帖子总结一下 快速乘法通常有两类应用:一.整数的运算,计算(a*b) mod c 二.矩 ...
- Qbxt 模拟赛 Day4 T2 gcd(矩阵乘法快速幂)
/* 矩阵乘法+快速幂. 一开始迷之题意.. 这个gcd有个规律. a b b c=a*x+b(x为常数). 然后要使b+c最小的话. 那x就等于1咯. 那么问题转化为求 a b b a+b 就是斐波 ...
- 乘方快速幂 OR 乘法快速幂
关于快速幂这个算法,已经不想多说,很早也就会了这个算法,但是原来一直靠着模板云里雾里的,最近重新学习,发现忽视了一个重要的问题,就是若取模的数大于int型,即若为__int64的时候应该怎么办,这样就 ...
- Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂)
Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂) Description 广义的斐波那契数列是指形如\[A_n=p*a_{n-1}+q*a_{n-2}\]的数列.今给定数列的两系数p和q, ...
- 矩阵乘法快速幂 codevs 1732 Fibonacci数列 2
1732 Fibonacci数列 2 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题解 查看运行结果 题目描述 Description 在“ ...
- ACM学习历程—HDU5667 Sequence(数论 && 矩阵乘法 && 快速幂)
http://acm.hdu.edu.cn/showproblem.php?pid=5667 这题的关键是处理指数,因为最后结果是a^t这种的,主要是如何计算t. 发现t是一个递推式,t(n) = c ...
- [vijos1725&bzoj2875]随机数生成器<矩阵乘法&快速幂&快速乘>
题目链接:https://vijos.org/p/1725 http://www.lydsy.com/JudgeOnline/problem.php?id=2875 这题是前几年的noi的题,时间比较 ...
随机推荐
- js实现导航固定定位
js实现导航固定定位 <!DOCTY ...
- [terry笔记]文件操作
如下记录一次作业: 很显然,我这个应该属于二逼青年版,会在以后更新文艺青年版的答案. 1.模仿sed,一个文件中,用新字符串替换老字符串. # file = input("file_name ...
- a.WHERE使用中单行子查询(适用于>,<,=,>=,<=等条件)
a.单行子查询(适用于>,<,=,>=,<=等条件) //查询工资最高的员工编号和员工名 select empno,ename from emp where ...
- NYIST 749 蚂蚁的难题(八)
蚂蚁的难题(八)时间限制:2000 ms | 内存限制:65535 KB难度:5 描述蚂蚁是一个古玩爱好者,他收藏了很多瓶瓶罐罐. 有一天,他要将他的宝贝们一字排开, 摆放到一个长度为L的展台上. 已 ...
- GROUP BY 与聚合函数 使用注意点
表的设计: 表里面的内容: 一:在不使用聚合函数的时候,group by 子句中必须包含所有的列,否则会报错,如下 select name,MON from [测试.] group by name 会 ...
- angular-Scope
Scope(作用域) 是应用在 HTML (视图) 和 JavaScript (控制器)之间的纽带. Scope 是一个对象,有可用的方法和属性. Scope 可应用在视图和控制器上. 当你在 Ang ...
- Java并发编程(七)ConcurrentLinkedQueue的实现原理和源码分析
相关文章 Java并发编程(一)线程定义.状态和属性 Java并发编程(二)同步 Java并发编程(三)volatile域 Java并发编程(四)Java内存模型 Java并发编程(五)Concurr ...
- 练练脑,继续过Hard题目
http://www.cnblogs.com/charlesblc/p/6384132.html 继续过Hard模式的题目吧. # Title Editorial Acceptance Diffi ...
- Extjs4.2 ajax请求url中传中文參数乱码问题
今天有个需求须要在url中传入中文參数.结果在后台取得时出现乱码,怀疑可能是编码问题.上网查询了资料,试了几种办法.发现有一种可行,记录在此,以便查阅. url中用encodeURI 进行2次编码: ...
- Mysql 数据迁移后 启动出错
今天上班后不知道为什么,mysql一直无法启动,折腾了半天于是决定重装 我本地的server用的是wamp , 重装的时候, 要进行数据备份 , 我使用的最简单粗暴的备份方式, 就是直接进入到mysq ...