codevs1281 矩阵乘法 快速幂 !!!手写乘法取模!!! 练习struct的构造函数和成员函数
对于这道题目以及我的快速幂以及我的一节半晚自习我表示无力吐槽,,
首先矩阵乘法和快速幂没必要太多说吧,,嗯没必要,,我相信没必要,,实在做不出来写两个矩阵手推一下也就能理解矩阵的顺序了,要格外注意一些细节,比如快速幂时ans矩阵的初始化方式,快速幂的次数,矩阵乘法过程中对临时矩阵的清零,最后输出结果时的初始矩阵。。。矩阵快速幂好理解但是细节还是有点小坑的。。
下面就是满满的槽点,,高能慎入!!!
对于这个题目要求矩阵过程中对m取模,结果对g取模,我表示难以接受,,上来没看清题直接wa19个点,另,经本人实测,在矩阵中直接对m和g取模会直接挂掉,
历经千辛万苦终于改对之后,,发现wa了3个点,,经过eirlys(某坑货)的提示发现过程中乘法会爆long long,于是便一脸mb,脑抽的改成unsign long long后依旧过不了,认真的去看了题解,,然后整个人就呵呵哒了,,题解告诉我要手写快速乘法。。。。。。
真是够了。。。。
#include <cstdio>
#include <cstring>
#include <algorithm> struct data {
long long f[][];
data (void) {
memset(f, , sizeof(f));
f[][] = ;
f[][] = ;
f[][] = ;
}
void clear(void) {
memset(f, , sizeof(f));
}
void print(void) {
for (int i = ; i < ; i++) {
for (int j = ; j < ; j++) printf("%lld ", f[i][j]);
printf("\n");
}
printf("\n");
}
}; long long m, a, c, x0, n, g;
data cur; long long mu (long long a1, long long a2) {
long long ans = ;
while (a2 > ) {
if (a2 & ) ans = (ans + a1) % m;
a1 = (a1 + a1) % m;
a2 >>= ;
}
return (ans);
} data operator * (data a1, data a2) {
data t;
t.clear();
for (int i = ; i < ; i++)
for (int j = ; j < ; j++)
for (int k = ; k < ; k++) {
t.f[i][j] = (t.f[i][j] + mu(a1.f[i][k], a2.f[k][j]) % m) % m;
}
return (t);
} data qpow(data x, long long v) {
data ans;
while (v > ) {
if (v & ) ans = ans * x;
x = x * x;
v >>= ;
}
return (ans);
} int main () {
scanf("%lld %lld %lld %lld %lld %lld", &m, &a, &c, &x0, &n, &g);
cur.clear();
cur.f[][] = ;
cur.f[][] = a % m;
cur.f[][] = ;
cur.f[][] = ;
cur = qpow(cur, n);
//cur.print();
long long ans = (mu(x0,cur.f[][]) % m + mu(c, cur.f[][] % m)) % m;
ans = ((ans % g) + g) % g;
printf("%lld", ans);
return ;
}
codevs1281 矩阵乘法 快速幂 !!!手写乘法取模!!! 练习struct的构造函数和成员函数的更多相关文章
- CodeForces 450B (矩阵快速幂模板题+负数取模)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=51919 题目大意:斐波那契数列推导.给定前f1,f2,推出指定第N ...
- 洛谷 P4910 帕秋莉的手环 矩阵乘法+快速幂详解
矩阵快速幂解法: 这是一个类似斐波那契数列的矩乘快速幂,所以推荐大家先做一下下列题目:(会了,差不多就是多倍经验题了) 注:如果你不会矩阵乘法,可以了解一下P3390的题解 P1939 [模板]矩阵加 ...
- 整数快速乘法/快速幂+矩阵快速幂+Strassen算法
快速幂算法可以说是ACM一类竞赛中必不可少,并且也是非常基础的一类算法,鉴于我一直学的比较零散,所以今天用这个帖子总结一下 快速乘法通常有两类应用:一.整数的运算,计算(a*b) mod c 二.矩 ...
- Qbxt 模拟赛 Day4 T2 gcd(矩阵乘法快速幂)
/* 矩阵乘法+快速幂. 一开始迷之题意.. 这个gcd有个规律. a b b c=a*x+b(x为常数). 然后要使b+c最小的话. 那x就等于1咯. 那么问题转化为求 a b b a+b 就是斐波 ...
- 乘方快速幂 OR 乘法快速幂
关于快速幂这个算法,已经不想多说,很早也就会了这个算法,但是原来一直靠着模板云里雾里的,最近重新学习,发现忽视了一个重要的问题,就是若取模的数大于int型,即若为__int64的时候应该怎么办,这样就 ...
- Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂)
Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂) Description 广义的斐波那契数列是指形如\[A_n=p*a_{n-1}+q*a_{n-2}\]的数列.今给定数列的两系数p和q, ...
- 矩阵乘法快速幂 codevs 1732 Fibonacci数列 2
1732 Fibonacci数列 2 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题解 查看运行结果 题目描述 Description 在“ ...
- ACM学习历程—HDU5667 Sequence(数论 && 矩阵乘法 && 快速幂)
http://acm.hdu.edu.cn/showproblem.php?pid=5667 这题的关键是处理指数,因为最后结果是a^t这种的,主要是如何计算t. 发现t是一个递推式,t(n) = c ...
- [vijos1725&bzoj2875]随机数生成器<矩阵乘法&快速幂&快速乘>
题目链接:https://vijos.org/p/1725 http://www.lydsy.com/JudgeOnline/problem.php?id=2875 这题是前几年的noi的题,时间比较 ...
随机推荐
- Vue学习之路第七篇:跑马灯项目实现
前面六篇讲解了Vue的一些基础知识,正所谓:学以致用,今天我们将用前六篇的基础知识,来实现类似跑马灯的项目. 学前准备: 需要掌握定时器的两个函数:setInterval和clearInterval以 ...
- map和multimap映射容器
map容器 map所处理的数据与数据库表具有键值的记录非常相似,在键值与映射数据之间,建立一个数学上的映射关系.map容器的数据结构仍然採用红黑树进行管理.插入的元素键值不同意反复,所使用的结点元素的 ...
- ant打包和jar包混淆
Ant是一种基于Java的build工具.相似于c语言中的makefile,这里做一记录.方便后面查看. <?xml version="1.0" encoding=" ...
- hibernate配置数据库连接池三种用法
三种连接都是以连接MySQl为例. <!-- JDBC驱动程序 --> <property name="connection.driver_class">o ...
- 上传文件 nginx 413错误
nginx : 413 Request Entity Too Large 上传文件过程发生413 Request Entity Too Large错误,翻译为请求实体过大,断定为nginx限制了请求体 ...
- 【iOS开发-54】案例学习:通过UIScrollView的缩放图片功能练习代理模式的详细实现
案例:(在模拟器中按住option键,点击鼠标就会出现缩放的手势) (1)在ViewController.m中: --缩放东西是UIScrollView除了滚动之外的还有一个功能,所以须要缩放的东西应 ...
- hdoj--1950--Bridging signals(二分查找+LIS)
Bridging signals Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...
- javascript系列-class10.DOM(下)
1.node节点(更详细的获取(设置)页面中所有的内容) 根据 W3C 的 HTML DOM 标准,HTML 文档中的所有内容都是节点: 元素是节点的别称,节点包含元素当然节点还有 ...
- [Avito Code Challenge 2018 G] Magic multisets(线段树)
题目链接:http://codeforces.com/contest/981/problem/G 题目大意: 有n个初始为空的‘魔法’可重集,向一个‘可重集’加入元素时,若该元素未出现过,则将其加入: ...
- Struts1、Struts2、Hibernate、Spring框架工作原理介绍
Struts1工作原理 Struts1工作原理图 1.初始化:struts框架的总控制器ActionServlet是一个Servlet,它在web.xml中配置成自动启动的Servlet,在启动时总控 ...