紫书 例题 11-3 UVa 1151 (有边集的最小生成树+二进制枚举子集)
标题指的边集是说这道题的套餐, 是由几条边构成的。
思路是先做一遍最小生成树排除边, 因为如果第一次做没有加入的边, 到后来新加入了很多权值为0的边,这些边肯定排在最前面,然后这条边的前面的那些边肯定都要再扫一遍, 也就是这条边无论如何都不会选。
那么后来就是二进制枚举套餐, 从头开始, 加入套餐中的边然后权值加上套餐的权值, 然后把之前筛选下来的边做kruskal就ok了。
注意要对数据范围敏感, 这里套餐最多也就8个所以可以二进制枚举子集。
#include<cstdio>
#include<vector>
#include<algorithm>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
using namespace std;
const int MAXN = 1123;
int x[MAXN], y[MAXN], f[MAXN];
int cost[MAXN], n, m, q, cnt, sum;
struct node
{
int u, v, w;
node(int u = 0, int v = 0, int w = 0) : u(u), v(v), w(w) {}
bool operator < (const node& rhs) const
{
return w < rhs.w;
}
};
vector<node> Edge, need;
vector<int> k[9];
int find(int x)
{
if(f[x] != x)
f[x] = find(f[x]);
return f[x];
}
int solve()
{
int ret = 0;
REP(i, 0, need.size())
{
int u = find(need[i].u), v = find(need[i].v);
if(u != v)
{
f[u] = v;
ret += need[i].w;
if(--cnt == 1) break;
}
}
return ret;
}
int main()
{
int T;
scanf("%d", &T);
while(T--)
{
Edge.clear(); need.clear();
scanf("%d%d", &n, &q);
REP(i, 0, q)
{
int t, x; k[i].clear();
scanf("%d%d", &t, &cost[i]);
while(t--)
{
scanf("%d", &x);
k[i].push_back(x);
}
}
REP(i, 1, n + 1) scanf("%d%d", &x[i], &y[i]), f[i] = i;
REP(i, 1, n + 1)
REP(j, i + 1, n + 1)
{
int t = (x[i]-x[j]) * (x[i]-x[j]) + (y[i]-y[j]) * (y[i]-y[j]);
Edge.push_back(node(i, j, t));
}
sort(Edge.begin(), Edge.end());
int ans = 0; cnt = n;
REP(i, 0, Edge.size())
{
int u = find(Edge[i].u), v = find(Edge[i].v);
if(u != v)
{
need.push_back(Edge[i]);
f[u] = v;
ans += Edge[i].w;
if(--cnt == 1) break; //注意是1
}
}
REP(num, 0, 1 << q)
{
sum = 0; cnt = n;
REP(i, 1, n + 1) f[i] = i;
REP(i, 0, q)
if(num & (1 << i))
{
sum += cost[i];
REP(j, 0, k[i].size())
{
int u = find(k[i][j]), v = find(k[i][0]);
if(u != v) f[u] = v, cnt--;
}
}
sum += solve();
ans = min(ans, sum);
}
printf("%d\n", ans);
if(T) puts("");
}
return 0;
}
紫书 例题 11-3 UVa 1151 (有边集的最小生成树+二进制枚举子集)的更多相关文章
- 紫书 例题 11-13 UVa 10735(混合图的欧拉回路)(最大流)
这道题写了两个多小时-- 首先讲一下怎么建模 我们的目的是让所有点的出度等于入度 那么我们可以把点分为两部分, 一部分出度大于入度, 一部分入度大于出度 那么显然, 按照书里的思路,将边方向后,就相当 ...
- 紫书 例题8-3 UVa 1152(中途相遇法)
这道题要逆向思维, 就是求出答案的一部分, 然后反过去去寻找答案存不存在. 其实很多其他题都用了这道题目的方法, 自己以前都没有发现, 这道题专门考这个方法.这个方法可以没有一直往下求, 可以省去很多 ...
- 紫书 例题8-12 UVa 12627 (找规律 + 递归)
紫书上有很明显的笔误, 公式写错了.g(k, i)的那个公式应该加上c(k-1)而不是c(k).如果加上c(k-1)那就是这一次 所有的红气球的数目, 肯定大于最下面i行的红气球数 我用的是f的公式, ...
- 紫书 例题8-4 UVa 11134(问题分解 + 贪心)
这道题目可以把问题分解, 因为x坐标和y坐标的答案之间没有联系, 所以可以单独求两个坐标的答案 我一开始想的是按照左区间从小到大, 相同的时候从右区间从小到大排序, 然后WA 去uDebug找了数据 ...
- 紫书 例题8-17 UVa 1609 (构造法)(详细注释)
这道题用构造法, 就是自己依据题目想出一种可以得到解的方法, 没有什么规律可言, 只能根据题目本身来思考. 这道题的构造法比较复杂, 不知道刘汝佳是怎么想出来的, 我想的话肯定想不到. 具体思路紫书上 ...
- 紫书 例题 9-5 UVa 12563 ( 01背包变形)
总的来说就是价值为1,时间因物品而变,同时注意要刚好取到的01背包 (1)时间方面.按照题意,每首歌的时间最多为t + w - 1,这里要注意. 同时记得最后要加入时间为678的一首歌曲 (2)这里因 ...
- 【uva 1151】Buy or Build(图论--最小生成树+二进制枚举状态)
题意:平面上有N个点(1≤N≤1000),若要新建边,费用是2点的欧几里德距离的平方.另外还有Q个套餐,每个套餐里的点互相联通,总费用为Ci.问让所有N个点连通的最小费用.(2组数据的输出之间要求有换 ...
- UVA 1151 买还是建(最小生成树)
买还是建 紫书P358 [题目链接]买还是建 [题目类型]最小生成树 &题解: 这题真的心累,看了3天,最后照着码还是wa,先放lrj代码,以后再看吧 &代码: // UVa1151 ...
- 紫书 例题 10-26 UVa 11440(欧拉函数+数论)
这里用到了一些数论知识 首先素因子都大于M等价与M! 互质 然后又因为当k与M!互质且k>M!时当且仅当k mod M! 与M!互质(欧几里得算法的原理) 又因为N>=M, 所以N!为M! ...
随机推荐
- BZOJ 2260 商店购物(最小树形图)
不会最小树形图的出门左转 其实如果确定每种商品第一件的购买顺序,那么剩下的商品肯定是以最优惠价格购买的. 如何确定各种商品第一件购买时的最小价值呢? 考虑如果购买了\(a_i\)这种商品,那么就能以\ ...
- pip常见用法汇总
1.pip安装 yum -y install epel-release && yum -y install python-pip 2.pip安装软件 (1)安装单个软件:pip ins ...
- Python数学实现二元一次方程
import cmath import math import sys def get_float(msg,allow_zero): x = None while x is None: try: x ...
- HDU3001 Traveling (状压dp+三进制+Tsp问题总结)
(1)这道题最多可以走两次,所以有0, 1, 2三种状态,所以我们要用三进制 如果要用三进制,就要自己初始化两个数组, 一个是3的n次方,一个是三进制数的第几位的数字是什么 void init() { ...
- [luogu] P4364 [九省联考2018]IIIDX(贪心)
P4364 [九省联考2018]IIIDX 题目背景 Osu 听过没?那是Konano 最喜欢的一款音乐游戏,而他的梦想就是有一天自己也能做个独特酷炫的音乐游戏.现在,他在世界知名游戏公司KONMAI ...
- static方法调用
Static方法调用,类名.方法名 int number = Integer.ParseInt(String ); 将字符串参数作为有符号的十进制整数进行解析 将数字解析成字节数组 Character ...
- 利用新版本自带的Zookeeper搭建kafka集群
安装简要说明新版本的kafka自带有zookeeper,其实自带的zookeeper完全够用,本篇文章以记录使用自带zookeeper搭建kafka集群.1.关于kafka下载kafka下载页面:ht ...
- Android.mk添加本地程序和库的经常使用模版
Android.mk添加本地程序和库的经常使用模版 Android中添加本地程序或者库.这些程序和库与其所在路径没有关系.仅仅与它们的配置文件Android.mk有关.Android.mk文件里可以主 ...
- iOS UI08_UITableView
(http://img.blog.csdn.net/20150808103801391) // // MainViewController.m // UI08_UITableView // // Cr ...
- vue引入swiper vue使用swiper vue脚手架使用swiper /引入js文件/引入css文件
vue引入swiper vue使用swiper vue脚手架使用swiper /引入js文件/引入css文件 ------------------------------------------- ...