紫书 例题 11-3 UVa 1151 (有边集的最小生成树+二进制枚举子集)
标题指的边集是说这道题的套餐, 是由几条边构成的。
思路是先做一遍最小生成树排除边, 因为如果第一次做没有加入的边, 到后来新加入了很多权值为0的边,这些边肯定排在最前面,然后这条边的前面的那些边肯定都要再扫一遍, 也就是这条边无论如何都不会选。
那么后来就是二进制枚举套餐, 从头开始, 加入套餐中的边然后权值加上套餐的权值, 然后把之前筛选下来的边做kruskal就ok了。
注意要对数据范围敏感, 这里套餐最多也就8个所以可以二进制枚举子集。
#include<cstdio>
#include<vector>
#include<algorithm>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
using namespace std;
const int MAXN = 1123;
int x[MAXN], y[MAXN], f[MAXN];
int cost[MAXN], n, m, q, cnt, sum;
struct node
{
int u, v, w;
node(int u = 0, int v = 0, int w = 0) : u(u), v(v), w(w) {}
bool operator < (const node& rhs) const
{
return w < rhs.w;
}
};
vector<node> Edge, need;
vector<int> k[9];
int find(int x)
{
if(f[x] != x)
f[x] = find(f[x]);
return f[x];
}
int solve()
{
int ret = 0;
REP(i, 0, need.size())
{
int u = find(need[i].u), v = find(need[i].v);
if(u != v)
{
f[u] = v;
ret += need[i].w;
if(--cnt == 1) break;
}
}
return ret;
}
int main()
{
int T;
scanf("%d", &T);
while(T--)
{
Edge.clear(); need.clear();
scanf("%d%d", &n, &q);
REP(i, 0, q)
{
int t, x; k[i].clear();
scanf("%d%d", &t, &cost[i]);
while(t--)
{
scanf("%d", &x);
k[i].push_back(x);
}
}
REP(i, 1, n + 1) scanf("%d%d", &x[i], &y[i]), f[i] = i;
REP(i, 1, n + 1)
REP(j, i + 1, n + 1)
{
int t = (x[i]-x[j]) * (x[i]-x[j]) + (y[i]-y[j]) * (y[i]-y[j]);
Edge.push_back(node(i, j, t));
}
sort(Edge.begin(), Edge.end());
int ans = 0; cnt = n;
REP(i, 0, Edge.size())
{
int u = find(Edge[i].u), v = find(Edge[i].v);
if(u != v)
{
need.push_back(Edge[i]);
f[u] = v;
ans += Edge[i].w;
if(--cnt == 1) break; //注意是1
}
}
REP(num, 0, 1 << q)
{
sum = 0; cnt = n;
REP(i, 1, n + 1) f[i] = i;
REP(i, 0, q)
if(num & (1 << i))
{
sum += cost[i];
REP(j, 0, k[i].size())
{
int u = find(k[i][j]), v = find(k[i][0]);
if(u != v) f[u] = v, cnt--;
}
}
sum += solve();
ans = min(ans, sum);
}
printf("%d\n", ans);
if(T) puts("");
}
return 0;
}
紫书 例题 11-3 UVa 1151 (有边集的最小生成树+二进制枚举子集)的更多相关文章
- 紫书 例题 11-13 UVa 10735(混合图的欧拉回路)(最大流)
这道题写了两个多小时-- 首先讲一下怎么建模 我们的目的是让所有点的出度等于入度 那么我们可以把点分为两部分, 一部分出度大于入度, 一部分入度大于出度 那么显然, 按照书里的思路,将边方向后,就相当 ...
- 紫书 例题8-3 UVa 1152(中途相遇法)
这道题要逆向思维, 就是求出答案的一部分, 然后反过去去寻找答案存不存在. 其实很多其他题都用了这道题目的方法, 自己以前都没有发现, 这道题专门考这个方法.这个方法可以没有一直往下求, 可以省去很多 ...
- 紫书 例题8-12 UVa 12627 (找规律 + 递归)
紫书上有很明显的笔误, 公式写错了.g(k, i)的那个公式应该加上c(k-1)而不是c(k).如果加上c(k-1)那就是这一次 所有的红气球的数目, 肯定大于最下面i行的红气球数 我用的是f的公式, ...
- 紫书 例题8-4 UVa 11134(问题分解 + 贪心)
这道题目可以把问题分解, 因为x坐标和y坐标的答案之间没有联系, 所以可以单独求两个坐标的答案 我一开始想的是按照左区间从小到大, 相同的时候从右区间从小到大排序, 然后WA 去uDebug找了数据 ...
- 紫书 例题8-17 UVa 1609 (构造法)(详细注释)
这道题用构造法, 就是自己依据题目想出一种可以得到解的方法, 没有什么规律可言, 只能根据题目本身来思考. 这道题的构造法比较复杂, 不知道刘汝佳是怎么想出来的, 我想的话肯定想不到. 具体思路紫书上 ...
- 紫书 例题 9-5 UVa 12563 ( 01背包变形)
总的来说就是价值为1,时间因物品而变,同时注意要刚好取到的01背包 (1)时间方面.按照题意,每首歌的时间最多为t + w - 1,这里要注意. 同时记得最后要加入时间为678的一首歌曲 (2)这里因 ...
- 【uva 1151】Buy or Build(图论--最小生成树+二进制枚举状态)
题意:平面上有N个点(1≤N≤1000),若要新建边,费用是2点的欧几里德距离的平方.另外还有Q个套餐,每个套餐里的点互相联通,总费用为Ci.问让所有N个点连通的最小费用.(2组数据的输出之间要求有换 ...
- UVA 1151 买还是建(最小生成树)
买还是建 紫书P358 [题目链接]买还是建 [题目类型]最小生成树 &题解: 这题真的心累,看了3天,最后照着码还是wa,先放lrj代码,以后再看吧 &代码: // UVa1151 ...
- 紫书 例题 10-26 UVa 11440(欧拉函数+数论)
这里用到了一些数论知识 首先素因子都大于M等价与M! 互质 然后又因为当k与M!互质且k>M!时当且仅当k mod M! 与M!互质(欧几里得算法的原理) 又因为N>=M, 所以N!为M! ...
随机推荐
- hdu5791 TWO
hdu5791 TWO 题意 给你两个数串 问你两个数串有多少子串一致 子串不一定是连续的 解法 我们设 \(dp[i][j]\) 表示A串匹配到 i 位,B串匹配到 j 位,一致的子串数.那么我们有 ...
- jquery 终止循环
jQuery中each类似于javascript的for循环 但不同于for循环的是在each里面不能使用break结束循环,也不能使用continue来结束本次循环,想要实现类似的功能就只能用ret ...
- Android开发进度04
1,今日:目标:实现登录和注册功能 2,昨天:完成登录和注册的界面以及后台数据库的操作 3,收获:会使用SQlite数据库的操作语句 4,问题:登录时出现问题(登录不上去)
- bat启动.exe的应用程序
新建一个文本文档,编写如下,完成后保存将后缀名txt改为bat即可. rem 启动***(要启动的服务名) @echo off rem 程序安装的顶层目录 d: rem 设置显示文字颜色 color ...
- ASP.NET-post、get的区别
post.get的区别 1.get通过把参数加在浏览器的地址栏中提交(最大2K),用post可以进行文件的提交: 2.使用post提交的页面在点击[刷新]按钮的时候浏览器一般会提示"是否重新 ...
- com.alibaba.fastjson.JSONPathException: expect '], but 'y'
今天遇到这样的一个错误 网上查找了各种资料,终于找到了报错的原因: String dataType = (String) JSONPath.eval(dataset.getSchema(), &quo ...
- POJ 1721
好像不需要用到开方什么的... 可以知道,一副牌即是一个循环,那么,由于GCD(L,K)=1,所以一次洗牌后,亦是一个循环.其实,K次洗牌等于是T^(2^K)了.既然是循环,必定有周期.那么,周期是多 ...
- Android学习路线(十三)Activity生命周期——暂停和恢复(Pausing and Resuming )一个Activity
在正常使用应用的过程中.前台的activity在一些时候会被其它的组件遮挡,导致这个activity暂停.举个样例.当一个半透明的activity被打开(比如一个dialog样式的activity), ...
- ZOJ 1696 Viva Confetti 计算几何
计算几何:按顺序给n个圆覆盖.问最后能够有几个圆被看见.. . 对每一个圆求和其它圆的交点,每两个交点之间就是可能被看到的圆弧,取圆弧的中点,往外扩展一点或者往里缩一点,从上往下推断有没有圆能够盖住这 ...
- 使用LSTM做电影评论负面检测——使用朴素贝叶斯才51%,但是使用LSTM可以达到99%准确度
基本思路: 每个评论取前200个单词.然后生成词汇表,利用词汇index标注评论(对 每条评论的前200个单词编号而已),然后使用LSTM做正负评论检测. 代码解读见[[[评论]]]!embeddin ...