MatchNet: Unifying Feature and Metric Learning for Patch-Based Matching

CVPR  2015

  本来都写到一半了,突然笔记本死机了,泪崩!好吧,重新写!本文提出了一种联合的学习patch表示的一个深度网络鲁棒的特征比较的网络结构。与传统的像SIFT特征点利用欧氏距离进行距离计算的方式不同,本文是利用全连接层,通过学习到的距离度量来表示两个描述符的相似性。

  本文的贡献点如下:

  1. 提出了一个新的利用深度网络架构基于patch的匹配来明显的改善了效果;

  2. 利用更少的描述符,得到了比state-of-the-art更好的结果;

  3. 实验研究了该系统的各个成分的有效作用,表明,MatchNet改善了手工设计 和 学习到的描述符加上对比函数;

  4. 最后,作者 release 了训练的 MatchNet模型。


  首先来看本文的网络架构:

  

  主要有如下几个成分:

  A. Feature Network.

  主要用于提取输入patch的特征,主要根据AlexNet改变而来,有些许变化。主要的卷积和pool层的两段分别有 preprocess layer bottlebeck layer,各自起到归一化数据和降维,防止过拟合的作用。

  B: Metric Network.

  主要用于feature Comparison,3层fc 加上 softmax。

  C: 在训练阶段,特征网络用作“双塔”,共享参数。双塔的输出串联在一起作为度量网络的输入。The entire network is trained on labeled patch-pairs generated from the sampler to minimize the cross-entropy loss. 在预测的时候,这两个子网络A 和 B 方便的用在 two-stage pipeline. 如下图所示:

  


  MatchNet 的具体参数如下表所示,注意Bottleneck 和 FC 中参数的选择。

  


  接下来看看“网络的训练和测试”,即:

  特征和度量网络联合的训练,利用随机梯度下降的方法,可以最小化下面的交叉熵损失函数:

  其中,yi 是输入pair xi 的0/1标签。1代表匹配。带箭头的 yi 和 1-yi 分别表示 softmax activations,是在FC3 上的两个点v0(xi) 和 v1(xi)计算得来的。计算公式如下:

  上面公式中,带箭头的 yi 用来表示公式1中预测标签为1的概率。

  

  由于数据正负样本的不平衡性,会导致实验精度的降低,本文采用采样的训练方法,在一个batchsize中,选择一半正样本,一半负样本进行训练。分别将patch输入给特征塔 和 度量网络,单独的进行训练,分为两个阶段进行。首先,对所有的patch进行特征编码,然后,我们将feature进行成对处理,输入给度量矩阵然后得到其scores。


  算法总结:

    

  实验结果贴图:

  

     我的感受:

  看完这篇文章,总体来说,有点懵逼!奇怪的是,作者竟然讲的津津有味!还记得开篇,作者说这文章的主要贡献点是提出了一种训练网络提取feature 和 度量feature之间的相似性。Well,提取feature主要体现在“双峰”上,哦,我错了,是“双塔”。这个无可厚非,到了全连接层,就是要得到的feature了。那么,度量feature之间的相似性,体现在哪里呢?哦,对,体现在最后最后的 全连接层上。那么,与传统方法的不同在于,本文的度量方式,并非简单的欧氏距离,而是学出来的。

    怎么体现学出来的呢???

    先从两张图像中提patch,将两种patch分别采样,输给两个提取特征的网络,然后将pool4 的输出降维(通过Bottleneck layer),将“双塔”的输出串联起来,输入到 fc 层,两层fc之后,输入给softmax,此时输出 0 或者 1,分别代表匹配或者不匹配,然后将此结果输出到 交叉熵计算loss,通过这样的方式,完成整个网络的训练,只是此处,提取特征的网络层 和 度量网络 是单独训练的,“双塔”的参数也是共享的。

  讲到这里,也许就是这个文章的主要内容了。Ok,该怎么借鉴,就看自己的了。

  附一张美照,哈哈,明天实验室整体出动去happy,玩真人 CS 和 烧烤,突然感觉好开心啊。。哈哈。。。

  

  

论文笔记之:MatchNet: Unifying Feature and Metric Learning for Patch-Based Matching的更多相关文章

  1. 配置和运行 MatchNet CVPR 2015 MatchNet: Unifying Feature and Metric Learning for Patch-Based Matching

    配置和运行 MatchNet CVPR 2015 GitHub: https://github.com/hanxf/matchnet 最近一个同学在配置,测试这个网络,但是总是遇到各种问题. 我也尝试 ...

  2. 论文笔记 — MatchNet: Unifying Feature and Metric Learning for Patch-Based Matching

    论文:https://github.com/ei1994/my_reference_library/tree/master/papers 本文的贡献点如下: 1. 提出了一个新的利用深度网络架构基于p ...

  3. 论文笔记之:Multiple Feature Fusion via Weighted Entropy for Visual Tracking

    Multiple Feature Fusion via Weighted Entropy for Visual Tracking ICCV 2015 本文主要考虑的是一个多特征融合的问题.如何有效的进 ...

  4. 论文笔记系列-Neural Architecture Search With Reinforcement Learning

    摘要 神经网络在多个领域都取得了不错的成绩,但是神经网络的合理设计却是比较困难的.在本篇论文中,作者使用 递归网络去省城神经网络的模型描述,并且使用 增强学习训练RNN,以使得生成得到的模型在验证集上 ...

  5. 论文笔记:Deep Attentive Tracking via Reciprocative Learning

    Deep Attentive Tracking via Reciprocative Learning NIPS18_tracking Type:Tracking-By-Detection 本篇论文地主 ...

  6. 论文笔记:(CVPR2017)PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

    目录 一. 存在的问题 二. 解决的方案 1.点云特征 2.解决方法 三. 网络结构 四. 理论证明 五.实验效果 1.应用 (1)分类: ModelNet40数据集 (2)部件分割:ShapeNet ...

  7. 论文笔记之:Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation

    Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation Google  2016.10.06 官方 ...

  8. 论文笔记(6):Weakly-and Semi-Supervised Learning of a Deep Convolutional Network for Semantic Image Segmentation

    这篇文章的主要贡献点在于: 1.实验证明仅仅利用图像整体的弱标签很难训练出很好的分割模型: 2.可以利用bounding box来进行训练,并且得到了较好的结果,这样可以代替用pixel-level训 ...

  9. 论文笔记之: Deep Metric Learning via Lifted Structured Feature Embedding

    Deep Metric Learning via Lifted Structured Feature Embedding CVPR 2016 摘要:本文提出一种距离度量的方法,充分的发挥 traini ...

随机推荐

  1. Oracle GoldenGate 12c 新特性

    针对Oracle 12c的专门优化: 针对Oracle数据库的集成交付模式:提升在oracle DB中目标端的交付速度: 针对非Oracle数据库的协调交付模式:降低非oracle DB中多线程配置的 ...

  2. CDH上执行WordCount的意外和收获

    前面将Cloudera Manager安装到集群上的一台主机后,并通过Cloudera manager安装了hadoop-2.6.0-CDH5.4.4.今日来测试安装的集群是否很够很好的执行mapre ...

  3. 计算系数(noip2011)

    [问题描述]给定一个多项式(ax + by)^k,请求出多项式展开后(x^n)*(y^m)项的系数.[输入]输入文件名为 factor.in.共一行,包含 5 个整数,分别为a,b,k,n,m,每两个 ...

  4. java应用程序和虚拟机实例之间的关系

    每一个java程序都会产生一个java虚拟机的实例.并不是说一个物理机上,运行多个java应用程序就只有一个java虚拟机实例,多少个java应用程序就有多少个java虚拟机实例.

  5. (转)HTML5 本地存储

    原文:http://www.cnblogs.com/rainman/archive/2011/06/22/2086069.html HTML5 本地存储 1.sessionStorage 2.loca ...

  6. python构建模拟模型——网站独立访问用户数量

    背景:发现一个有趣的现象,即一些用户在每一月都仅仅访问网站一次,我们想要了解这些人数量的变化趋势. 建立数学模型:简化问题,根据瓮模型推导出公式(具体推导见<数据之魅>,有时间再补充... ...

  7. 使用httputils上传图片到服务器

    //创建httpUtils对象 HttpUtils mRegHttpUtils = new HttpUtils(); //图片路径 String path = "/sdcard/Downlo ...

  8. HDU 5823 (状压dp)

    Problem color II 题目大意 定义一个无向图的价值为给每个节点染色使得每条边连接的两个节点颜色不同的最少颜色数. 对于给定的一张由n个点组成的无向图,求该图的2^n-1张非空子图的价值. ...

  9. magento日常使用

    magento order number长度(修改)设置 2013年3月15日星期五 Asia/Shanghai上午10时22分02秒 1-进入要修改的该网站的数据库:2-找到表名:eav_entit ...

  10. navicat MySQL 只有1000条记录

    /*************************************************************************** * navicat MySQL 只有1000条 ...